CAPACITIES OF COMPACT SETS IN LINEAR SUBSPACES OF *Rⁿ*

TORD SJODIN

We consider two types of spaces, the Bessel potential spaces $L^p_{\alpha}(R^n)$ and the Besov spaces $A^p_{\alpha}(R^n)$, $\alpha > 0$, $1 < p < \infty$. **Associated in a natural way with these spaces are classes of exceptional sets. We characterize the exceptional sets for** *Λ p (Rⁿ)* **by an extension property for continuous functions and prove an inequality between Bessel and Besov capacities.**

The classes of exceptional sets for the spaces $L^p_{\alpha}(R^n)$ have been studied by the concept of capacity [5]. Capacity definitions of these classes are given in § 2.

Bessel potential spaces and Besov spaces in $Rⁿ$ and $Rⁿ⁺¹$ are connected by restriction theorems. A short statement of these results is the following:

(1.1)
$$
L^p_{\beta}(R^{n+1})|_{R^n} = \Lambda^p_{\alpha}(R^n)
$$

(1.2)
$$
A_{\beta}^p(R^{n+1})|_{R^n} = A_{\alpha}^p(R^n) ,
$$

where $\alpha > 0$, $1 < p < \infty$, and $\beta = \alpha + 1/p$. (0. V. Besov [4] and E.M. Stein [7].)

The restriction theorem above gives relations between exceptional classes of different spaces L_x^p and A_x^p in R^n and R^{n+1} .

This enables us to prove an extension theorem for continuous functions on a compact set $K \subset R^n$ into $\Lambda^n_{\alpha}(R^n)$ (Theorem 1) analogous to the $L_n^p(R^n)$ – case contained in [6, Theorem 1]. Finally we prove an inequality between the capacities defining the classes of excep tional sets for $\Lambda^p_{\alpha}(R^n)$ and $L^p_{\alpha}(R^n)$ (Theorem 2).

2. Preliminaries and statements of the theorems. We consider the *n*-dimensional space R^n of *n*-tuples $x = (x_1, x_2, \dots, x_n)$. Points in R^{n+1} are written (x, x_{n+1}) , where $x \in R^n$ and $x_{n+1} \in R^1$. Then R^n is identified as the subspace $\{(x, 0); x \in \mathbb{R}^n\}$ of \mathbb{R}^{n+1} . Compact sets are denoted by K. If $K \subset R^n$ then K is a compact subset of R^{n+1} as well. As usual, the space of p -summable functions is denoted by $L^p(R^n)$ with norm $||\cdot||_p$. The Bessel kernel G^n_α in R^n is the $L^1(R^n)$ function whose Fourier transform equals $(1 + |x|^2)^{-\alpha/2}$, $\alpha > 0$.

The space of convolutions $U = G_{\alpha}^* f$, where $f \in L^p(R^*)$, with the norm $||U||_{\alpha,p} = ||f||_p$, is denoted by $L^p_{\alpha}(R^n)$, $\alpha > 0$, $1 \leq p < \infty$. A func $\text{tion} \;\; U \! \in \! \varLambda^p_\alpha(R^n), \, 1 \leqq p \leqq \infty, \, 0 < \! \alpha < \! 1 \, \; \text{if}$

$$
||U|_{\alpha,p}=||U||_p+\left(\iint\frac{|U(x)-U(y)|^p}{|x-y|^{ap+n}}dxdy\right)^{1/p}
$$