CAPACITIES OF COMPACT SETS IN LINEAR SUBSPACES OF R^n

Tord Sjödin

We consider two types of spaces, the Bessel potential spaces $L^p_{\alpha}(R^n)$ and the Besov spaces $\Lambda^p_{\alpha}(R^n)$, $\alpha > 0$, 1 . $Associated in a natural way with these spaces are classes of exceptional sets. We characterize the exceptional sets for <math>\Lambda^p_{\alpha}(R^n)$ by an extension property for continuous functions and prove an inequality between Bessel and Besov capacities.

The classes of exceptional sets for the spaces $L^{p}_{\alpha}(\mathbb{R}^{n})$ have been studied by the concept of capacity [5]. Capacity definitions of these classes are given in § 2.

Bessel potential spaces and Besov spaces in \mathbb{R}^n and \mathbb{R}^{n+1} are connected by restriction theorems. A short statement of these results is the following:

(1.1)
$$L^{p}_{\beta}(R^{n+1})|_{R^{n}} = \Lambda^{p}_{\alpha}(R^{n})$$

(1.2)
$$\Lambda^p_{\beta}(R^{n+1})|_{R^n} = \Lambda^p_{\alpha}(R^n) ,$$

where $\alpha > 0$, $1 , and <math>\beta = \alpha + 1/p$. (O. V. Besov [4] and E.M. Stein [7].)

The restriction theorem above gives relations between exceptional classes of different spaces L^p_{α} and Λ^p_{α} in \mathbb{R}^n and \mathbb{R}^{n+1} .

This enables us to prove an extension theorem for continuous functions on a compact set $K \subset \mathbb{R}^n$ into $\Lambda^p_{\alpha}(\mathbb{R}^n)$ (Theorem 1) analogous to the $L^p_{\alpha}(\mathbb{R}^n)$ – case contained in [6, Theorem 1]. Finally we prove an inequality between the capacities defining the classes of exceptional sets for $\Lambda^p_{\alpha}(\mathbb{R}^n)$ and $L^p_{\alpha}(\mathbb{R}^n)$ (Theorem 2).

2. Preliminaries and statements of the theorems. We consider the *n*-dimensional space \mathbb{R}^n of *n*-tuples $x = (x_1, x_2, \dots, x_n)$. Points in \mathbb{R}^{n+1} are written (x, x_{n+1}) , where $x \in \mathbb{R}^n$ and $x_{n+1} \in \mathbb{R}^1$. Then \mathbb{R}^n is identified as the subspace $\{(x, 0); x \in \mathbb{R}^n\}$ of \mathbb{R}^{n+1} . Compact sets are denoted by K. If $K \subset \mathbb{R}^n$ then K is a compact subset of \mathbb{R}^{n+1} as well. As usual, the space of *p*-summable functions is denoted by $L^p(\mathbb{R}^n)$ with norm $||\cdot||_p$. The Bessel kernel G^n_{α} in \mathbb{R}^n is the $L^1(\mathbb{R}^n)$ function whose Fourier transform equals $(1 + |x|^2)^{-\alpha/2}, \alpha > 0$.

The space of convolutions $U = G_{\alpha}^{n} * f$, where $f \in L^{p}(\mathbb{R}^{n})$, with the norm $||U||_{\alpha,p} = ||f||_{p}$, is denoted by $L_{\alpha}^{p}(\mathbb{R}^{n})$, $\alpha > 0$, $1 \leq p < \infty$. A function $U \in \Lambda_{\alpha}^{p}(\mathbb{R}^{n})$, $1 \leq p \leq \infty$, $0 < \alpha < 1$ if

$$|U|_{{}_{lpha,\,p}}=||U||_{{}_{p}}+\left(\int\!\!\!\int\!\!\!\frac{|U(x)-U(y)|^{p}}{|x-y|^{ap+n}}\,dxdy
ight)^{{}_{1/p}}$$