REMARK ON A PAPER OF STUX CONCERNING SQUAREFREE NUMBERS IN NON-LINEAR SEQUENCES

G. J. RIEGER

Stux studied squarefree numbers of the form [f(n)]; his most interesting application is $f(n)=n^c$ for real c with 1 < c < 4/3. We would like to point out that a stronger result follows immediately from estimates of Deshouillers.

Let 1 < c < 2, $x \ge 1$; denote by $N_{e}(x; k, l)$ the number of natural numbers $n \le x$ with $[n^{e}] \equiv 1 \mod k$. According to [1], we have

$$(1)$$
 $N_{c}(x; k, l) = rac{x}{k} + O_{c}((x^{1+c}k^{-1})^{1/3})$ for $x^{c-5/4} \leq k < x^{c-1/2}$,

$$(2)$$
 $N_c(x; k, l) = \frac{x}{k} + O_c((x^{4+c}k^{-1})^{1/7})$ for $k < x^{c-5/4}$.

Denote by $S_{c}(x)$ the number of squarefree numbers of the form $[n^{\circ}]$ with natural $n \leq x$; the inclusion-exclusion principle in the form $|\mu(n)| = \sum_{d^{2}|n,d>0} \mu(d)$ gives

(3)
$$S_c(x) = \sum_{d^2 \leq x^c} \mu(d) N_c(x; d^2, 0) \quad (x \geq 1).$$

For $d^2 \ge x^{\mathfrak{c}^{-1/2}}$ we use the trivial estimate $N_{\mathfrak{c}}(x; d^2, \mathbf{0}) = O(x^{\mathfrak{c}} d^{-2});$ using

$$(\ 4\) \qquad \qquad \sum_{d>t} d^{-2} = O(t^{-1}) \qquad (t \geqq 1)$$
 ,

we obtain

(5)
$$S_{c}(x) = \sum_{d^{2} < x^{c-1/2}} \mu(d) N_{c}(x; d^{2}, 0) + O(x^{(2c+1)/4}).$$

In case $c \leq 5/4$, we use (1) and

$$(\ 6\) \qquad \qquad \sum_{0 < d \leq t} \, d^{-2/3} = O(t^{1/3}) \qquad (t \geq 1)$$

in (5); this gives

(7)
$$S_{c}(x) = \sum_{d^{2} < x^{c-1/2}} \mu(d) d^{-2}x + O_{c}(x^{(2x+1)/4})$$
.

In case c > 5/4, we split the sum in (5) according to $d^2 < \text{or} \ge x^{e^{-5/4}}$ and apply (2) and (1); using $\sum_{0 < d \le t} d^{-2/7} = O(t^{5/7})$ $(t \ge 1)$ and (6), we obtain again (7). But (7), $\sum_{d>0} \mu(d)d^{-2} = 6\pi^{-2}$, and (4) give immediately