ON RELATIONS FOR REPRESENTATIONS OF FINITE GROUPS

C. L. MORGAN

Let G be a finite group, and suppose that

$$A: G \longrightarrow \operatorname{GL}(n, C)$$

is a (complex) representation of G with character χ . A (complex) linear relation for A is a formal complex linear combination $\sum_{g \in G} a_g g$ such that $\sum_{g \in G} a_g A(g) = 0$.

We prove the following theorem, which determines the linear relations in terms of the character χ .

THEOREM. Let A be a representation for a finite group G, let χ be the character of A, and let $\{g_1, \dots, g_k\}$ be a subset of G. Then $\sum_{j=1}^k a_j g_j$ is a relation for A if and only if $\sum_{j=1}^k \chi(g_i g_j^{-1}) a_j = 0$, for all $i = 1, \dots, k$.

NOTE 1. If C is the $k \times k$ matrix whose ij-entry is $\chi(g_i g_j^{-1})$ and a is the column vector whose jth entry is a_j , then the above conclusion can be rephrased as follows:

$$\sum\limits_{j=1}^k a_j g_j$$
 is a relation for $A \iff Ca = 0$.

NOTE 2. The above theorem is a generalization of a result by Russell Merris [3]. His result may be stated in the following way. Let χ be an irreducible character of G, let M be the matrix obtained by applying χ to the entries of the multiplication table of G, let A be any representation of G affording χ , and let S be a subset of G. Then $\{A(g) | g \in S\}$ is linearly independent if and only if the rows of M corresponding to S are linearly independent. Our result strengthens Merris' result in three ways: (1) the condition about irreducibility is removed, (2) a way to determine the coefficients of any relation is given, and (3) smaller matrices are involved.

Proof of Theorem. Let χ_1, \dots, χ_r be the irreducible characters of G, and let CG denote the complex group algebra of G. For each $k = 1, \dots, r$, let

$$c_{\scriptscriptstyle k} = (\chi_{\scriptscriptstyle k}(e)/|G|)_{\scriptscriptstyle g\,\in\,G}\,\chi_{\scriptscriptstyle k}(g)g$$
 .

Then c_k is a central idempotent of CG and corresponds to a representation of G with character χ_k in the following way:

Let R_k denote the principal ideal of CG generated by c_k , and let Z_k be any minimal left ideal of CG contained in R_k . Then