SCHUR'S THEOREM AND THE DRAZIN INVERSE

ROBERT E. HARTWIG

It is shown that if $M = \begin{bmatrix} A & C \\ B & D \end{bmatrix}$ is a square $2n \times 2n$ matrix **over a ring** R, such that $\overrightarrow{AC} = \overrightarrow{CA} \in R_{n \times n}$, and with the pro**perty that** *A* **and** *C* **possess Drazin inverses, then** *M* **is invertible in** $R_{2n\times2n}$ if and only if $DA-BC$ is invertible in $R_{n\times n}$.

1. Introduction. In a recent paper [7], Herstein and Small extended the classic result of Schur $[5, p. 46]$ to matrices over E-rings. These are rings for which every primitive image is artinian. This result states that for a square complex block matrix $M = \begin{bmatrix} A & C \\ B & D \end{bmatrix}$, with *A, B, C, D* square of the same size such that $AC = CA$, then M is invertible exactly when $\Delta = DA - BC$ in invertible. This is a different but equivalent formulation of the problem as stated in [7],

The purpose of this note is to show that this result by Schur is basically a consequence of the *local* existence of the Drazin inverse [2] of the matrices *A* and *C;* that is, the strong-ττ-regularity of *A* and *C* [1] [4]. The proof of [7] was based on the fact that Schur's result for matrices over E -rings is really equivalent to the corresponding result for matrices over simple artinian rings (which may be taken to be division rings). Since artinian rings with unity are noetherian [8], p. 69, it follows that artinian rings with unity are strongly- π -regular, so that our local result extends the Schur theorem for artinian rings as proven in [7].

The Drazin inverse a^d of a ring element a , is the unique solution, if any, to the equations

$$
(1) \t akxa = ak, xax = x, ax = xa,
$$

for some $k \geq 0$, while the group inverse a^* of a is the unique solution, if any, of these equations with $k = 0$, or 1. For example, if a is algebraic over some field \mathcal{I} and $a^{n+1}b = a^n$, with $ab = ba$, then $a^d =$ $u^n b^{n+1}$. The element a^d exists if and only if a is strongly- π -regular, that is, when both chains $\{a^iR\}$ and $\{Ra^i\}$ are ultimately stationary, [5, Theorem 4]. A ring element is called (von Neumann) *regular* if $aa^-a = a$ for some ring element a^- . If there exists such a^- that is invertible, a is called $unit$ -regular.

We shall assume familiarity with the properties of these inverses $[4] [2] [6]$ and in particular with the fact that $ac = ca \Rightarrow a^d c = ca^d$ [4, Theorem 1].

It is known that, unlike regularity and unit regularity, $R_{2\times2}$ does