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ON THE DEGREE OF THE SPLITTING FIELD OF AN
IRREDUCIBLE BINOMIAL

DAVID GAY AND WILLIAM YSLAS VELEZ

Let xm—a be irreducible over a field F. We give a new
proof of Darbi's formula for the degree of the splitting field
of xm—a and investigate some of its properties. We give a
more explicit formula in case the only roots of unity in F
are ± 1 .

A formula for the degree of the splitting field of an irreducible
binomial over a field F of characteristic 0 was given in 1926 in the
following:

THEOREM (Darbi [1]). Let ζm denote a primitive mih-root of
unity and let xm-a e F[x] be irreducible with root a. Define an
integer k as follows:

( 1 ) /b = m a x { ί : ί | m and am/ι e F(ζJ} .

Then the degree of the splitting field of xm — a is mφF(m)/k, where
φF(m) = [F(ζm): F].

In § 1 of this paper we give a new proof of this theorem
which, with an appropriate interpretation of the symbols above,
will also be valid when char F > 0. In § 2, with the aid of a
theorem of Schinzel, we obtain some properties of the number k,
defined as in (1). Finally in § 3, we will express k explicitly as a
function of a and m for a field F of characteristic 0 such that the
only roots of unity in F are ± 1.

1* Proof of Darbi's theorem for arbitrary characteristic* Let
char F — p > 0 and let m be a positive integer. Set m = mop

f,
with (m0, p) = 1 and set ζm = ζmo. Thus φF(m) = φF(m0).

Our first step is to reduce the proof of the general theorem to
a proof of the separable case, that is, to the case where char F\m.
Indeed, let char F = p > 0 and xm — a be irreducible over F with
root a. The splitting field of xm - a is F(a, ζ j = F(apf, αm°, ζmo),
which in turn is the compositum, over F, of F(apf, ζmo), a separa-
ble extension of F, and F(am°), a purely-inseparable extension. Thus,
if Theorem 1 were true for the separable case, xm° — a (with split-
ting field F(apf, ζWo)), then we would have:

[F(a, ζ m o ) : F] - pf(mQφF(mQ)/k) - mφF(m)/k .
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