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INTEGER MULTIPLES OF PERIODIC
CONTINUED FRACTIONS

T. W. CuUSsICK

This paper contains much simpler proofs of the results
of Henri Cohen (Acta Arithmetica 26 (1974-75), 129-148) on
the period length of the continued fraction for Na, where
N is a positive integer and a is a quadratic irrational.

1. Introduction. We let [a,, a,, ---] denote the simple continued
fraction whose partial quotients are the integers a, (a; >0 for 7> 0).
If @ is a quadratic irrational, so that a has a periodic continued
fraction, then we put

Q& = [b(» bu Yy bm Ay =y am] 3

where b, b, -+, b, is the nonperiodic part of the continued fraction
and a,, ---, a, is the period. We let P(@) = n denote the length of
the period of the expansion of a.

H. Cohen [2] defined the functions

S(N, n) = sup P(Nea)
(a)=n

for each pair of integers N >1, » =1. The fact that S(N, n) is
always finite was already known (see Schinzel [4]).

Let A denote the set of all real quadratic irrationals. Cohen
defined the function

R(N) = sup (S(N, n)/n) = sup (P(Nex)/ P(e))

for each integer N > 1, and proved that R(N) is always finite. The
paper of Cohen [2] is devoted to proving various results about S(N, n)
and R(N). In particular, Cohen [2, pp. 141-147] obtained the exact
value of R(N) for infinitely many N and gave a conjecture for the
value of R(N) in all the remaining cases.

Cohen made use of an algorithm given by Mendés France [3] for
computing the continued fraction expansion of Na from the expan-
sion of @, where a is any real number. Cohen [2, §§3 and 4, pp.
132-137] devotes considerable space to showing that if one wants to
use the algorithm of Mendés France [3] in order to study P(Na) for
quadratic irrationals «, then one needs various facts about 2 by 2
matrices with integer entries taken mod N.

It turns out that the algorithm of Mendés France [3] was already
given by A. Chatelet [1] in a different but equivalent form. The
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