INTEGER MULTIPLES OF PERIODIC CONTINUED FRACTIONS

T. W. Cusick

This paper contains much simpler proofs of the results of Henri Cohen (Acta Arithmetica 26 (1974-75), 129-148) on the period length of the continued fraction for $N \alpha$, where N is a positive integer and α is a quadratic irrational.

1. Introduction. We let $\left[a_{0}, a_{1}, \cdots\right]$ denote the simple continued fraction whose partial quotients are the integers $a_{i}\left(a_{i}>0\right.$ for $\left.i>0\right)$. If α is a quadratic irrational, so that α has a periodic continued fraction, then we put

$$
\alpha=\left[b_{0}, b_{1}, \cdots, b_{m}, \overline{a_{1}, \cdots, a_{n}}\right]
$$

where $b_{0}, b_{1}, \cdots, b_{m}$ is the nonperiodic part of the continued fraction and a_{1}, \cdots, a_{n} is the period. We let $P(\alpha)=n$ denote the length of the period of the expansion of α.
H. Cohen [2] defined the functions

$$
S(N, n)=\sup _{P(\alpha)=n} P(N \alpha)
$$

for each pair of integers $N>1, n \geqq 1$. The fact that $S(N, n)$ is always finite was already known (see Schinzel [4]).

Let A denote the set of all real quadratic irrationals. Cohen defined the function

$$
R(N)=\sup _{n \geq 1}(S(N, n) / n)=\sup _{\alpha \in A}(P(N \alpha) / P(\alpha))
$$

for each integer $N>1$, and proved that $R(N)$ is always finite. The paper of Cohen [2] is devoted to proving various results about $S(N, n)$ and $R(N)$. In particular, Cohen [2, pp. 141-147] obtained the exact value of $R(N)$ for infinitely many N and gave a conjecture for the value of $R(N)$ in all the remaining cases.

Cohen made use of an algorithm given by Mendès France [3] for computing the continued fraction expansion of $N \alpha$ from the expansion of α, where α is any real number. Cohen [2, §§3 and 4, pp. 132-137] devotes considerable space to showing that if one wants to use the algorithm of Mendès France [3] in order to study $P(N \alpha)$ for quadratic irrationals α, then one needs various facts about 2 by 2 matrices with integer entries taken $\bmod N$.

It turns out that the algorithm of Mendès France [3] was already given by A. Châtelet [1] in a different but equivalent form. The

