DENTING POINTS IN B^{p}

JOSEPH A. CIMA AND JAMES ROBERTS

It is shown that in the weighted Bergmann space B^p of analytic functions all points of the unit sphere are denting points of the unit ball.

1. Introduction and definitions. Let Δ be the open unit disk in the complex plane (C). For each fixed p in (0, 1) we define a finite positive measure $d\mu(z) \equiv (1 - |z|^2)^{1/p^{-2}} dm(z)$, where $z \in A$ and dm(z) is the usual Lebesgue measure on Δ . We consider the closed subspace $B^{p} = B^{p}(d\mu)$ of $L^{1}(d\mu)$ consisting of all functions in $L^{1}(d\mu)$ that are analytic on Δ . B^{p} is the containing Banach space of the Hardy space $H^{p}(\Delta)$ and indeed B^{p} is the Mackey completion of H^{p} . (See Duren, Romberg, and Shields [4] and Shapiro [7].) Let B be the closed unit ball and S the unit sphere in B^{p} . Although the closed unit ball of $L^{1}(d\mu)$ has no extreme points we shall show that the ball B has certain smoothness properties. It is not a fortiori clear that B has extreme points. However, several functional analytical properties of the space B^p are known. In particular a result of Shields and Williams [8; p. 295] shows that B^{p} is complemented in $L^{1}(d\mu)$. An argument of Lindenstrauss and Pelczynski [5; p. 248] can then be used to prove that B^{p} is topologically isomorphic to the sequence space l^{i} . It is known that l^{i} (being a separable, dual space) has the Radon-Nikodym property. A good reference on the Radon-Nikodym property is Diestal and Uhl [3]. Hence, if T is a topological isomorphism of B^p onto l^1 then TB = C is a bounded. closed convex subset of l^1 and as such has extreme points. In fact B is the closed, convex hull of its extreme points.

If X is a Banach space and $x \in X$ with ||x|| = 1 we say that x is a denting point of the unit ball of X if for each $\varepsilon > 0$ the closed convex hull of the set

$$\{y \in X: ||y|| \leq 1 \text{ and } ||y - x|| \geq \varepsilon\}$$

does not contain x. The Radon-Nikodym property for l^1 also guarantees that C(=TB) has denting points [3; p. 25, 30] and hence there are points of $S \subseteq B^p$ which are denting points. Finally we define strong extreme point.

DEFINITION. A point x in a Banach space X, with ||x|| = 1 is a strong extreme point of the unit ball of X if for each $\varepsilon > 0$ there is a $\delta > 0$ such that