THE 2-CLASS GROUP OF BIQUADRATIC FIELDS, II

EZRA BROWN AND CHARLES J. PARRY

We describe methods for determining the exact power of 2 dividing the class number of certain cyclic biquadratic number fields. In a recent article, we developed a relative genus theory for cyclic biquadratic fields whose quadratic subfields have odd class number; we considered the case in which the quadratic subfield is $Q(\sqrt{l})$ with $l \equiv 5 \pmod{8}$ a prime. Here we shall extend our methods to the cases in which the subfield is $Q(\sqrt{2})$ or $Q(\sqrt{l})$ with $l \equiv 1 \pmod{8}$ a prime. We consider all such cases for which the 2-class group of the biquadratic field is of rank at most 3.

2. Notation and preliminaries.

Q: the field of rational numbers.

l: a rational prime satisfying l = 2 or $l \equiv 1 \pmod{8}$.

 p, q, p_i : rational primes.

k: the quadratic field $Q(\sqrt{l})$.

 $\varepsilon = (u + v\sqrt{l})/2$, the fundamental unit of k, with u, v > 0.

m: a square-free positive rational integer, relatively prime to l.

 $d = -m\sqrt{l} \varepsilon$.

K: the biquadratic field $k(\sqrt{d})$.

 h, h_0 : the class numbers of K and k, respectively.

 $\left(\frac{x, y}{\pi}\right)$: the quadratic norm residue symbol over k.

 $\lceil \frac{\alpha}{\beta} \rceil$: the quadratic residue symbol for k.

 $\left(\frac{a}{b}\right)$: the rational quadratic residue (Legendre) symbol.

 $\left(\frac{a}{b}\right)$: the rational 4th power residue symbol (defined if and only if (a/b) = 1).

N(): the relative norm for K/k.

H: the 2-Sylow subgroup of the class group of K.

It is easy to see that K is a cyclic extension of Q of degree 4 which contains k. Recall that ε has (absolute) norm -1, that h_0 is odd and that H has rank t-1, where t is the number of prime ideals of k which ramify in K.

3. Class number divisibility: The case $l \equiv 1 \pmod{8}$.

THEOREM 1. Let $m = p \equiv 3 \pmod{4}$. Then