THE 2-CLASS GROUP OF BIQUADRATIC FIELDS, II

Ezra Brown and Charles J. Parry

We describe methods for determining the exact power of 2 dividing the class number of certain cyclic biquadratic number fields. In a recent article, we developed a relative genus theory for cyclic biquadratic fields whose quadratic subfields have odd class number; we considered the case in which the quadratic subfield is $Q(\sqrt{l})$ with $l \equiv 5(\bmod 8)$ a prime. Here we shall extend our methods to the cases in which the subfield is $Q(\sqrt{2})$ or $Q(\sqrt{l})$ with $l \equiv 1(\bmod 8)$ a prime. We consider all such cases for which the 2 -class group of the biquadratic field is of rank at most 3 .
2. Notation and preliminaries.
Q : the field of rational numbers.
l : a rational prime satisfying $l=2$ or $l \equiv 1(\bmod 8)$.
p, q, p_{i} : rational primes.
k : the quadratic field $Q(\sqrt{l})$.
$\varepsilon=(u+v \sqrt{l}) / 2$, the fundamental unit of k, with $u, v>0$.
m : a square-free positive rational integer, relatively prime to l.
$d=-m \sqrt{l} \varepsilon$.
K : the biquadratic field $k(\sqrt{d})$.
h, h_{0} : the class numbers of K and k, respectively. $\left(\frac{x, y}{\pi}\right):$ the quadratic norm residue symbol over k.
$\left[\frac{\alpha}{\beta}\right]$: the quadratic residue symbol for k.
$\left(\frac{a}{b}\right)$: the rational quadratic residue (Legendre) symbol.
$\left(\frac{a}{b}\right)_{4}$: the rational 4th power residue symbol (defined if and only
if $(a / b)=1$).
$N()$: the relative norm for K / k.
H : the 2-Sylow subgroup of the class group of K.
It is easy to see that K is a cyclic extension of Q of degree 4 which contains k. Recall that ε has (absolute) norm -1 , that h_{0} is odd and that H has rank $t-1$, where t is the number of prime ideals of k which ramify in K.
3. Class number divisibility: The case $l \equiv 1(\bmod 8)$.

Theorem 1. Let $m=p \equiv 3(\bmod 4)$. Then

