EQUIDISTRIBUTION THEORY IN HIGHER DIMENSIONS

CHIA-CHI TUNG

Let X, Y be complex spaces, and $f: X \to Y$ a meromorphic map. Assume in Y an admissible family $\mathfrak{A} = \{S_b\}_{b \in N}$ of analytic subsets S_b is given. Assume f is almost adapted to \mathfrak{A} . The purpose of this paper is to prove that, if f satisfies certain growth conditions, the valence of S_b (for almost all $S_b \in \mathfrak{A}$) grows to infinity at the same rate as the characteristic of f. Here X is assumed to carry an exhaustion function which is, e.g., g-concave, centrally g-convex or g-quasiparabolic.

The results obtained generalize the Casorati-Weierstrass type theorems of Chern [4] [6], Cowen [7], Griffiths-King [12], Stoll [23] [26], Wu [31, II-III] (see also Griffiths [10]).

Introduction. It is well-known that the classical Casorati-Weierstrass theorem is not true in higher dimensions. In fact, the standard example of Fatou-Bierberbach [2, p. 45] gives a holomorphic imbedding of C^2 into P_2 with a nondense image. Chern [4] first showed that a holomorphic map $f: \mathbb{C}^n \to \mathbb{P}_n$ whose characteristic grows sufficiently rapidly assumes almost every point in P_n . This result was generalized to subvarieties of a general codimension in a complex manifold by Hirshfelder [13] and Stoll [21]-[23]. In Wu [31] certain geometric conditions were given which ensure the Casorati-Weierstrass property. For instance, if C^n is given the Fubini-Study metric, then a nondegenerate quasi-conformal holomorphic map $f: C^n \to P_n$ assumes almost every point in P_n . This in fact carries over to a balanced holomorphic map of C^m into P_n (see [10, p. 54]), whose image intersects almost every (n - p)-dimensional linear subspace of P_n (where 0

Let $f: X \to Y$ be a meromorphic map between complex spaces X, Y. Assume in Y an admissible family $\mathfrak{A} = \{S_b\}_{b \in N}$ is given. This means \mathfrak{A} is defined by two holomorphic maps $Y \xleftarrow{h} M \xrightarrow{\pi} N$ (where M is a complex space, N a compact complex manifold) such that (i) π is open, surjective; (ii) h is proper, locally trivial at every point of M; (iii) each S_b is the topological image of $\pi^{-1}(b)$ under h, and S_b contains no branch of Y. Then S_b is analytic of pure codimension s in Y for all b. The main purpose of this paper is to establish the equidistribution property that, for almost every $S_b \in \mathfrak{A}$, the valence of S_b grows (over suitable sequence of domains) at the same rate as the characteristic of f. The admissible family defined here is more