THE EVOLUTION OF BOUNDED LINEAR FUNCTIONALS WITH APPLICATION TO INVARIANT MEANS

H. KHARAGHANI

Let S be a topological semigroup and let X be a left translation invariant, left introverted closed subspace of CB(S). Let *m* and $\bar{\mu}$ be elements of X^* , where $\bar{\mu}(f) = \int \! f d\mu$ for *f* in CB(S) and μ is a measure on S which lives on a suitable set. It is shown that the evolution and convolution of m and $\bar{\mu}$ coincide. The same argument carries over to prove that if $X \subset W(S)$, then the evolution and convolution of m and n in X^* are the same (a known result). The topological invariance of invariant means on X^* is discussed.

1. Preliminaries. Let S be a topological semigroup with separately continuous multiplication and CB(S) the Banach space, under supremum norm of bounded real continuous functions on S. For each s in S, define the left and right translation operators on CB(S) by $(l_s f)(t) =$ f(st) and $(r_s f)(t) = f(ts)$ for all t in S, f in CB(S). The subspace X of CB(S) is called left (right) introverted, if for each m in X^* the function $s \to f * m(s) = m(l_s f)(s \to m * f(s) = m(r_s f))$ is in X. W(S)denotes the subspace of CB(S) consisting of weakly almost periodic functions, i.e., the functions f such that the set $\{r_s f : s \in S\}$ is conditionally weak compact. LUC(S) (WLUC(S)) is the subspace of CB(S)consisting of (weakly) left uniformly continuous functions on S, i.e., the functions f such that the map $s \rightarrow l_s f$ is norm (weak) continuous. $M_{\sigma}(S)(M(S))$ denotes the linear space of all real valued signed Baire (regular Borel) measures on S. The mapping $T: CB(S) \to M^*(S)$ is the natural embedding of CB(S) into $M^*(S)$ defined by $(Tf)(\mu) = \int f d\mu$ for f in CB(S) and μ in M(S). Following Graniter [4] $\sigma(CB(S), M_{\sigma}(S)) =$ $\sigma(C, M_a)$ denotes the weakest topology on CB(S) which makes all linear functionals on CB(S) of type $\int f d\mu$ for μ in M_{σ} continuous.

For μ in $M_{\sigma}(S)$ or in M(S) and f in CB(S) let $\mu * f(t) = \int r_t f d\mu$, $f^*\mu(t) = \int l_t f d\mu$ for any t in S. For μ in $M_{\sigma}(S)$ or in M(S), $\overline{\mu}$ denotes the functional in $CB^*(S)$ defined by $\overline{\mu}(f) = \int f d\mu$ for f in CB(S).

The main theorem. Before stating the main theorem we 2. need the following lemma.

LEMMA 2.1. Let S be a topological semigronp. For f in CB(S)