MULTIPLIERS FOR |C, 1| SUMMABILITY OF FOURIER SERIES

G. S. PANDEY

In the present paper we improve the conditions of all previously known theorems on the absolute (C, 1) summability factors of Fourier series.

1. Let the formal expansion of a function f(x), periodic with period 2π and integrable in the sense of Lebesgue over $[-\pi, \pi]$, in a Fourier-trigonometric series be given by

(1.1)
$$f(x) \sim \frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) \equiv \sum_{n=0}^{\infty} A_n(x).$$

We write

$$\phi(u) = f(x + u) + f(x - u) - 2f(x)$$

and throughout this paper A will denote a positive constant, not necessarily the same at each occurrence.

Whittaker [5], in 1930, proved that the series

$$\sum\limits_{n=1}^{\infty}A_{n}(x)/n^{lpha}$$
 , $lpha>0$,

is summable |A| almost everywhere.

Later, Prasad [4] demonstrated that the series

$$\sum_{n=n_0}^{\infty} A_n(x)/\mu_n$$
 ,

where

$$\mu_n=\Bigl(\prod\limits_{
u=1}^{k-1}\log^
u n\Bigr)(\log^k n)^{{}_{1+arepsilon}}$$
 , $\log^k n_{_0}>0$, $arepsilon>0$,

and

$$\log^k n = \log (\log^{k-1} n), \cdots, \log^2 n = \log \log n$$
;

is summable |A| almost everywhere.

Chow [2], on the other hand, has shown that the series $\sum \lambda_n A_n(x)$ is summable |C, 1| almost everywhere, provided $\{\lambda_n\}$ is a convex sequence satisfying the condition $\sum n^{-1} \cdot \lambda_n < \infty$.

Cheng [1], in 1948, established the following:

THEOREM A. If