A REMARK ON INFINITELY NUCLEARLY DIFFERENTIABLE FUNCTIONS

TEÓFILO ABUABARA

There is an infinitely nuclearly differentiable function of bounded type from E to R which is not of bounded-compact type, when $E = l_1$, the Banach space of all summable sequences of real numbers.

Let E and F be two real Banach spaces. A mapping $f: E \to F$ is said to be weakly uniformly continuous on bounded subsets of Eif for each bounded set $B \subset E$ and each $\varepsilon > 0$, there are ϕ_1, ϕ_2, \cdots , $\phi_k \in E'$ and $\delta > 0$ such that if $x, y \in B$, $|\phi_i(x) - \phi_i(y)| < \delta(i = 1, 2, \cdots, k)$, then $||f(x) - f(y)|| < \varepsilon$. $C_w^m(E; F)$ is the space of *m*-times continuously differentiable mappings $f: E \to F$ satisfying the following conditions:

(1) $\hat{d}^{j}f(x) \in \mathscr{P}_{w}({}^{j}E; F)(x \in E, j \leq m)$

(2) $\hat{d}^{j}f: E \to \mathscr{P}_{w}({}^{j}E; F)$ is weakly uniformly continuous on bounded subsets of E, where $\mathscr{P}_{w}({}^{m}E; F)(m \in N)$ is the Banach space of continuous *m*-homogeneous polynomials which are weakly uniformly continuous on bounded subsets of E, its norm being the one induced on it by the current norm of $\mathscr{P}({}^{m}E; F)$. Set

$$C^{\infty}_w(E; F) = igcap_{m=0}^{+\infty} C^m_w(E; F)$$
 .

 $C^m_w(E; F)$ is endowed with the topology τ^m_i generated by the following system of semi-norms

$$f \in C_w^m(E; F) \sup \{ || \hat{d}^j f(x) ||; x \in B, j \leq m \},\$$

where B runs through the bounded subsets of E.

For further details we refer to Aron-Prolla [1].

PROPOSITION 1 (Aron-Prolla [1]). If E' has the bounded approximation property, then $\mathscr{P}_{f}(E; F)$ is τ_{b}^{m} -dense in $C_{w}^{m}(E; F)$, for all $m \geq 1$.

Hence, since $||P|| \leq ||P||_N$ for every $P \in \mathscr{P}_N({}^{\mathsf{m}}E; F)(m \in N)$, then $\mathscr{C}_{Nbc}(E; F)$ is contained in $C^{\infty}_w(E; F)$.

PROPOSITION 2 (Aron-Prolla [1]). Let $f: E \to F$ be a weakly uniformly continuous mapping on bounded sets. If $B \subset E$ is a bounded set, then f(B) is precompact.

PROPOSITION 3. $\mathscr{C}_{Nbc}(l_1) \neq \mathscr{C}_{Nb}(l_1)$, that is, there is an infinitely