A CONVOLUTION RELATED TO GOLOMB'S ROOT FUNCTION

E. E. GUERIN

The root function $\gamma(n)$ is defined by Golomb for n>1 as the number of distinct representations $n=a^b$ with positive integers a and b. In this paper we define a convolution psuch that γ is the Γ -analog of the (Dirichlet) divisor function au. The structure of the ring of arithmetic functions under addition and Γ is discussed. We compute and interpret Γ analogs of the Moebius function and Euler's Φ -function. Formulas and an algorithm for computing the number of distinct representations of an integer $n \ge 2$ in the form $n=a_1^{a_2}$ · · · · , with a_i a positive integer, $i{=}1,\,\cdots$, k , are given.

1. Introduction. Let Z denote the set of positive integers, let A denote the set of arithmetic functions (complex-valued functions with domain Z), and let F denote the set of elements of Zwhich are not kth powers of any positive integer for $k > 1(k \in \mathbb{Z})$. Note that $1 \notin F$. The divisor function τ can be defined as $\tau = \nu_0 * \nu_0$, where $\nu_0 \in A$, $\nu_0(n) = 1$ for all $n \in Z$, and * is the Dirichlet convolution defined for $\alpha, \beta \in A$ by $(\alpha * \beta)(n) = \sum_{d \mid n} \alpha(d)\beta(n/d)$.

Any integer $n \ge 2$ having canonical form $n = p_i^{e_1} \cdots p_r^{e_r}$ is uniquely expressible as $n = m^g$, where g = g.c.d. (e_1, \dots, e_r) and $m \in F$. Golomb [1] defines the root function $\gamma(n)$ for $n \in \mathbb{Z}$, n > 1, as the number of distinct representations $n = a^b$ with $a, b \in \mathbb{Z}$; and he notes that $\gamma(n) = \tau(g)$ for $n = m^g$, $m \in F$, $g \in Z$. We let $\gamma(1) = 1$.

For $\alpha, \beta \in A$, $n = m^g$, with $m \in F$, $g \in Z$, we define the G-convolution ("Golomb" convolution), \(\nabla \), by

(1.1)
$$(\alpha \nabla \beta)(n) = \sum_{\substack{d \mid g}} \alpha(m^d) \beta(m^{g/d}) \; .$$

We define $(\alpha \nabla \beta)(1) = 1$. This G-convolution is not of the Narkiewicz type [2, 4].

In § 2, we show that $\{A, +, 7\}$ (where $(\alpha + \beta)(n) = \alpha(n) + \beta(n)$, $n \in \mathbb{Z}$) is a commutative ring with unity and we characterize the units and the divisors of zero. We define a G-multiplicative function and note that the set of G-multiplicative units in $\{A, +, F\}$ forms an Abelian group under the operation Γ .

We choose to define Γ as in (1.1) because then $(\nu_0 \Gamma \nu_0)(n)$ equals $\gamma(n)$, the number of distinct representations of n as a^b , $a, b \in \mathbb{Z}$;