A CONVOLUTION RELATED TO GOLOMB'S ROOT FUNCTION

E. E. Guerin

Abstract

The root function $\gamma(n)$ is defined by Golomb for $n>1$ as the number of distinct representations $n=a^{b}$ with positive integers a and b. In this paper we define a convolution ∇ such that γ is the ∇-analog of the (Dirichlet) divisor function τ. The structure of the ring of arithmetic functions under addition and ∇ is discussed. We compute and interpret ∇ analogs of the Moebius function and Euler's Φ-function. Formulas and an algorithm for computing the number of distinct representations of an integer $n \geqq 2$ in the form $n=a_{1}^{a_{2}} .^{\cdot{ }^{k}}$, with a_{i} a positive integer, $i=1, \cdots, k$, are given.

1. Introduction. Let Z denote the set of positive integers, let A denote the set of arithmetic functions (complex-valued functions with domain Z), and let F denote the set of elements of Z which are not k th powers of any positive integer for $k>1(k \in Z)$. Note that $1 \notin F$. The divisor function τ can be defined as $\tau=\nu_{0} * \nu_{0}$, where $\nu_{0} \in A, \nu_{0}(n)=1$ for all $n \in Z$, and * is the Dirichlet convolution defined for $\alpha, \beta \in A$ by $(\alpha * \beta)(n)=\sum_{d \mid n} \alpha(d) \beta(n / d)$.

Any integer $n \geqq 2$ having canonical form $n=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$ is uniquely expressible as $n=m^{g}$, where $g=$ g.c.d. $\left(e_{1}, \cdots, e_{r}\right)$ and $m \in F$. Golomb [1] defines the root function $\gamma(n)$ for $n \in Z, n>1$, as the number of distinct representations $n=a^{b}$ with $a, b \in Z$; and he notes that $\gamma(n)=\tau(g)$ for $n=m^{g}, m \in F, g \in Z$. We let $\gamma(1)=1$.

For $\alpha, \beta \in A, n=m^{g}$, with $m \in F, g \in Z$, we define the G-convolution ("Golomb" convolution), ∇, by

$$
\begin{equation*}
(\alpha \nabla \beta)(n)=\sum_{d \mid g} \alpha\left(m^{d}\right) \beta\left(m^{g / d}\right) \tag{1.1}
\end{equation*}
$$

We define $(\alpha \nabla \beta)(1)=1$. This G-convolution is not of the Narkiewicz type [2, 4].

In $\S 2$, we show that $\{A,+, \nabla\}$ (where $(\alpha+\beta)(n)=\alpha(n)+\beta(n)$, $n \in Z$) is a commutative ring with unity and we characterize the units and the divisors of zero. We define a G-multiplicative function and note that the set of G-multiplicative units in $\{A,+, \nabla\}$ forms an Abelian group under the operation V.

We choose to define ∇ as in (1.1) because then $\left(\nu_{0} \nabla \nu_{0}\right)(n)$ equals $\gamma(n)$, the number of distinct representations of n as $a^{b}, a, b \in Z$;

