EXTENDING A BRANCHED COVERING OVER A HANDLE

ALLAN L. EDMONDS

It is shown that if $\varphi: M^n \to S^n$, $n \ge 3$, is a branched covering of degree at least 3 and if W^{n+1} is $M^n \times [0, 1]$ with a 2handle attached, then φ extends to a branched covering $W^{n+1} \to S^n \times [0, 1]$.

1. Introduction. Let $\varphi: M^n \to S^n$ be a branched covering, where M^n is a connected *n*-manifold, $f: \partial B^k \times D^{n-k+1} \to M^n$ be a flat embedding, and $W^{n+1} = M^n \times [0, 1] \cup_{(f,1)} B^k \times D^{n-k+1}$ be $M^n \times [0, 1]$ with a *k*-handle attached along $M^n \times 1$ via *f*. When can one extend φ to a branched covering $\theta: W^{n+1} \to S^n \times [0, 1]$?

If k = 1 and deg $\varphi \ge 2$, one always can extend φ [2; (6.1)]. But for k = 2 and deg $\varphi = 2$ one meets obstructions indicated by the fact that the 3-torus T^3 is not a 2-fold branched covering of $S^3[4]$.

In this paper we show (Theorem 4.4) that one can always extend φ if k = 2 provided that deg $\varphi \ge 3$ and $n \ge 3$. (For n = 2 one would need to assume that $f(\partial B^2)$ does not separate M^2 .) The prototype for a result of this sort was proved in a recent paper by J. Montesinos [8] for the case n = 3, when φ is a particular standard 3-fold branched covering of a connected sum of $S^1 \times S^2$'s over S^3 .

Again in the case when k = 3, deg $\varphi = 3$, and $n \ge 4$ one meets further obstructions indicated by the fact that T^4 is not a 3-fold branched covering of S^4 [1].

2. Preliminaries. We shall work in the PL category of piecewise linear manifolds and maps [6]. All embeddings of manifolds in manifolds will be required to be locally flat. The symbols M^n and N^n will denote compact orientable *n*-manifolds. The symbols B^n and D^n will be reserved for a standard model of a PL *n*-ball, say $\{x \in \mathbf{R}^n : |x_i| \leq 1, i = 1, \dots, n\}$, and $S^n = \partial B^{n+1}$ will denote the standard PL *n*-sphere.

A branched covering is a surjective, finite-to-one, open (PL) map $\varphi: M^n \to N^n$ between n-manifolds. The singular set of a branched covering $\varphi: M^n \to N^n$ is the set of $x \in M^n$ near which φ fails to be a local homeomorphism and is denoted by Σ_{φ} ; the branch set of φ is $B_{\varphi} = \varphi \Sigma_{\varphi} \subset N^n$.

The degree of a branched covering $\varphi: M^n \to N^n$ is deg $\varphi = \sup \{ \sharp \varphi^{-1}(y) \colon y \in N^n \}$. One easily verifies that deg φ is the absolute value of the ordinary homological degree of φ as a map.

A branch homotopy is a branched covering $\theta: M^n \times [0, 1] \rightarrow N^n \times$