$H^{2}(\mu)$ SPACES AND BOUNDED POINT EVALUATIONS

Tavan T. Trent

Let $H^{2}(\mu)$ denote the closure of the polynomials in $L^{2}(\mu)$, where μ is a positive finite compactly supported Borel measure carried by the closed unit disc \bar{D}. For $\lambda \in \bar{D}$, define $E(\lambda)=\sup \left\{|p(\lambda)| /\|p\|_{\mu}\right\}$, where the suprenum is taken over all polynomials whose $L^{2}(\mu)$ norm is not zero. If $E(\lambda)<\infty$ we say that μ has a bounded point evaluation at λ, abbreviated b.p.e. at λ. Whenever $E(\lambda)<\infty$ we may fix the value of $f \in H^{2}(\mu)$ at λ. We determine the set on which all functions in $H^{2}(\mu)$ have (fixed) analytic values in terms of the parts of the spectrum of a certain operator.

In the case that the support of μ has a hole H bounded by an exposed arc Γ contained in ∂D and $E(z)$ is finite in H, we show how to recover the absolutely continuous part (with respect to Lebesgue measure on ∂D) of $\left.d \mu\right|_{\Gamma}$ from a knowledge of the $E(z)$'s in H. A corollary of this is that for such measures μ the functions in $H^{2}(\mu)$ behave locally near Γ like those of classical Hardy space. That is, they have boundary values and their zero sets near Γ satisfy a Blaschke type growth condition. We apply this corollary to measures of the form $d \nu=G d A+w d \sigma$ to study the local behavior of functions in $H^{2}(\nu)$ near $\Gamma(A$ denotes planar measure on \bar{D}, $d \sigma$ denotes linear Lebesgue measure on ∂D, and G and w are in an appropriate sense not too small on D and Γ respectively).

1. Bounded evaluations and analytic extensions of functions in $H^{2}(\mu)$. Let μ be a finite positive compactly supported Borel measure carried by the closed unit disc \bar{D}. We note that for λ a complex number, the point evaluation functional defined on polynomials by

$$
p \longrightarrow p(\lambda)
$$

is bounded with respect to the $L^{2}(\mu)$ norm if and only if $E(\lambda)<\infty$. In this latter case, by the Riesz representation theorem there is a unique element of $H^{2}(\mu)$, denoted by k_{λ}, satisfying

$$
p(\lambda)=\left\langle p, k_{\lambda}\right\rangle
$$

for all polynomials p and $\left\|k_{i}\right\|=E(\lambda)$. We call k_{λ} the bounded evaluation functional for μ at λ, abbreviated b.e.f. for μ at λ.

If μ has a b.p.e. at λ with b.e.f. k_{λ} and $f \in H^{2}(\mu)$, then we fix the value of f at λ by

