COMPACT OPERATORS OF THE FORM uC_{φ}

HERBERT KAMOWITZ

If A is the disc algebra, the uniform algebra of functions analytic on the open unit disc D and continuous on its closure, and if $u, \varphi \in A$ with $||\varphi|| \leq 1$, then the operator uC_{φ} is defined on A by uC_{φ} : $f(z) \to u(z)f(\varphi(z))$. In this note we characterize compact operators of this form and determine their spectra.

We recall that a bounded linear operator T from a Banach space B_1 to a Banach space B_2 is *compact* if given a bounded sequence $\{x_n\}$ in B_1 , there exists a subsequence $\{x_{nk}\}$ such that $\{Tx_{nk}\}$ converges in B_2 .

If $\varphi: \overline{D} \to \overline{D}$, we let φ_n denote n^{th} the iterate of φ , i.e., $\varphi_0(z) = z$ and $\varphi_n(z) = \varphi(\varphi_{n-1}(z))$ for $z \in \overline{D}$ and $n \ge 1$. Our main result is the following.

THEOREM. Let $u \in A$, $\varphi \in A$, $||\varphi|| \leq 1$ and suppose φ is not a constant function.

I. The operator uC_{φ} is compact if, and only if, $|\varphi(z)| < 1$ whenever $u(z) \neq 0$.

II. Suppose uC_{φ} is compact and let $z_0 \in \overline{D}$ be the unique fixed point of φ for which $\varphi_n(z) \to z_0$ for all $z \in D$. If $|z_0| = 1$, then uC_{φ} is quasinilpotent, while if $|z_0| < 1$, the spectrum $\sigma(uC_{\varphi}) = \{u(z_0)\varphi'(z_0)^n \mid n \text{ is a positive integer}\} \cup \{0, u(z_0)\}.$

1. Characterization of compact uC_{φ} . We first consider the easy case in which φ is a constant function.

THEOREM 1.1. Suppose $u \in A$ and $\varphi(z) = a \in \overline{D}$ for all $z \in \overline{D}$. Then uC_{φ} is compact.

Proof. Since $\varphi(z) = a$ for all $z \in \overline{D}$, $(uC_{\varphi})f(z) = u(z)f(\varphi(z)) = f(a)u(z)$. Therefore the range of uC_{φ} is one-dimensional and so uC_{φ} is compact.

We next give a necessary and sufficient condition that uC_{φ} be a compact operator for those φ which are not constant functions.

THEOREM 1.2. Suppose $u \in A$, $\varphi \in A$, $||\varphi|| \leq 1$ and φ is not a constant function. Then uC_{φ} is a compact operator on A if, and only if, $|\varphi(z)| < 1$ whenever $u(z) \neq 0$.