ON SINGULAR INDICES OF ROTATION FREE DENSITIES

Hideo Imai

The properties of singular indices of nonnegative rotation free densities on $\Omega(\lambda)=\{\lambda<|z| \leqq 1\}(\lambda \geqq 0)$ will be studied. The relation between the singular index $\alpha(P)$ of a nonnegative rotation free density P on $\Omega(\lambda)(\lambda>0)$ and the Martin compactification $\Omega(\lambda)_{P}^{*}$ of $\Omega(\lambda)$ with respect to the elliptic equation $\Delta u=P u$ will be established.

A nonnegative locally Hölder continuous function $P(|z|)(|z|=r)$ on $\Omega(\lambda)$ is called a nonnegative rotation free density on $\Omega(\lambda)$. The singular index $\alpha(P)$ of a density P at $r=\lambda$ is the quantity given by

$$
\alpha(P)=\lim _{r \rightarrow \lambda} e_{1}(r) / e_{0}(r)
$$

where $e_{j}(r)(j=1,2)$ is a unique bounded solution of the equation

$$
\frac{d^{2}}{d r^{2}} e(r)+\frac{1}{r} \frac{d}{d r} e(r)-\left(P(r)+j^{2} / r^{2}\right) e(r)=0(j=0,1)
$$

on $(\lambda, 1]$ with $e_{j}(1)=1$ for $\lambda=0$, and furthermore with $\lim _{r \rightarrow \lambda} e_{j}(r)=$ 0 for $\lambda>0$. In particular, $\alpha(0)$ with $P \equiv 0$ on $\Omega(\lambda)(\lambda \geqq 0)$ will be referred to as the harmonic index at $r=\lambda$. The elliptic dimension, including the harmonic dimension with $P \equiv 0$, of a density P at the ideal boundary $|z|=\lambda, \operatorname{dim} \mathscr{P}(\lambda)$ in notation, is the dimension of the half module $\mathscr{P}(\lambda)$ of the positive solutions u of $\Delta u=P u$ on $\Omega(\lambda)$ with $u=0$ on $|z|=1$. The elliptic dimension is an ideal boundary property (M. Heins [2], K. Hayashi [1], and M. Ozawa [12], [13]). The Picard principle is said to be valid for a density P at $|z|=\lambda$ if $\operatorname{dim} \mathscr{P}(\lambda)=1$ or equivalently $\alpha(P)=0$ (M. Nakai [8]).

In [8] M. Nakai had shown that the singular index $\alpha(P)$ at $\lambda=0$ determines the Martin compactification in the following ways:

$$
\Omega(0)_{P}^{*} \approx\{\alpha(P) \leqq|z| \leqq 1\}, \quad \alpha(P)=0 \text { or } \alpha(P)>0
$$

in the sense of homeomorphism for any nonnegative rotation free density P on $\Omega(0)$ and each ideal boundary point is minimal.

It will be shown that the singular indices are linearly ordered in the sense that $\alpha(P) \leqq \alpha\left(P_{1}\right)$ if $P \leqq P_{1}$ on $\Omega(\lambda)(\lambda \geqq 0)$. In particular, the harmonic index which is equal to $(-2 \lambda \log \lambda)\left(1-\lambda^{2}\right)^{-1}$ for $\lambda>0$ minimizes the singular indices at $r=\lambda$ among the nonnegative rotation free densities on $\Omega(\lambda)$. As a counterpart of

