CANCELLING 1-HANDLES AND SOME TOPOLOGICAL IMBEDDINGS

MICHAEL H. FREEDMAN

In this note we use the existence of a certain type of handle decomposition (see corollary) for compact simply connected P. L. 4-manifolds and R. Edwards results on the double suspension conjecture to prove:

THEOREM 2. Let $\alpha \in H_2(M; Z)$ where M is a compact simply connected P. L. 4-manifold. Then there is a proper topological imbedding (possible nonlocally flat) $\theta \colon S^2 \times R \to M \times R$ (mapping ends to ends) with $\theta_*[S^2 \times R] = \overline{\alpha} \in H_2$ ($M \times R; Z$). $\overline{\alpha}$ is the image of α under $\times R$. Proper, here, means inverse images of compact sets are compact.

In [2], we considered the problem of constructing smooth proper imbeddings, θ , and showed that if α is characteristic (dual to $w_2(\tau(M))$, the only obstruction to the existence of θ is an Arf invariant which is equal to the Milnor-Kervaire number $(=(\text{signature }(M) - \alpha \cdot \alpha/8)(\text{mod }2))$ when M is closed and that if α is ordinary (not dual to $W_2(\tau(M))$ there is no obstruction. This suggests two problems: (1) Can θ always be arranged to be topologically locally flat, and (2) can θ always be arranged to be P. L.?

Here is our "handle cancellation" theorem:

THEOREM 1. Let M be any compact connected P. L. manifold of dimension = m (assume M orientable if m = 3). Let N be a compact connected codimension 0 submanifold of ∂M . If $\pi_1(M, N) = 0$, then there is a codimension 0 submanifold, \overline{N} , of M with: (1) $N \hookrightarrow \overline{N}$, (2) the inclusion $N \hookrightarrow \overline{N}$ is a homotopy equivalence, (3) $M = \overline{N} \cup$ 2-handles \cup 3-handles $\cup \cdots \cup$ m-handles.

Note. The P. L. category is convenient here since handle decompositions always exists.

Proof. If $n \ge 5$, the usual arguments for cancelling handles produce the desired $\overline{N} \xrightarrow{\text{P. L.}} N \times I$ (see Appendix [3]). We need only consider the cases m = 3 or 4.

Let m = 4 and let $\mathscr{H}(M, N)$ be a handle decomposition of M relative to N. We may assume $\mathscr{H}(M, N)$ has no zero-handles.

Let $\{h_i^1\} = \{D_i^1 \times D_i^{m-1}\}$ be the 1-handles. Let $\{c_i\}$ be closed curves