SOLUTION FOR AN INTEGRAL EQUATION WITH CONTINUOUS INTERVAL FUNCTIONS

J. A. Chatfield

Suppose R is the set of real numbers and all integrals are of the subdivision-refinement type. Suppose each of G and H is a function from $R \times R$ to R and each of f and h is a function from R to R such that $f(a)=h(a)$, $d h$ is of bounded variation on $[a, x]$, and $\int_{a}^{x} H^{2}=\int_{a}^{x} G^{2}=0$ for $x>a$. The following two statements are equivalent:
(1) If $x>a$, then f is bounded on $[a, x], \int_{a}^{x} H$ exists, $\int_{a}^{x} G$ exists, $(R L) \int_{a}^{x}(f G+f H)$ exists, and

$$
f(x)=h(x)+(R L) \int_{a}^{x}(f G+f H) ;
$$

(2) If $a \leqq p<q \leqq x$, then each of ${ }_{p} \Pi^{q}(1+H)$ and ${ }_{p} \Pi^{q}(1-G)^{-1}$ exists and neither is zero,

$$
(R) \int_{a}^{x}\left[{ }_{t} \Pi^{x}(1+H)(1+G)\right]\left[(1-G)^{-1}\right] d h
$$

exists, and

$$
\begin{aligned}
f(x)= & f(a)_{a} \Pi^{x}(1+H)(1-G)^{-1} \\
& \left.+(R) \int_{a}^{x}\left[{ }_{t} \Pi^{x}(1+H)(1+G)\right][1-G)^{-1}\right] d h
\end{aligned}
$$

Introduction. In a recent paper [4], B. W. Helton solved the equation $f(x)=h(x)+(R L) \int_{a}^{x}(f G+f H)$ using product integration. All functions involved were required to be of bounded variation and the existence of various integrals was also required. In a subsequent paper [9], J. C. Helton was able to reduce the conditions placed on h to being a quasicontinuous function although other conditions such as requiring G and H to be of bounded variation were maintained. In still another paper [7], J. C. Helton was able to reduce the restrictions placed on G and H to that of being product bounded but he also used other restrictions not used in [4] or [9] such as requiring h to be a constant function and $G(r, s)=$ $-G(s, r)$, a condition not unlike that of being additive. In this paper we are concerned with obtaining a solution for the equation $f(x)=h(x)+(R L) \int_{a}^{x}(f G+f H)$ without requiring either G or H to be of bounded variation or that $G(r, s)=-G(s, r)$ or that h be a constant function. Instead, our major restriction placed on G and

