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SOLUTION FOR AN INTEGRAL EQUATION WITH
CONTINUOUS INTERVAL FUNCTIONS

J. A. CHATFIELD

Suppose R is the set of real numbers and all integrals
are of the subdivision-refinement type. Suppose each of G
and H is a function from R X R to R and each of / and h
is a function from R to R such that f(a) = h(a), dh is of
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The following two statements are equivalent:
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H exists,

\ G exists, (RL) \ (fG + fH) exists, and
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fix) = h(x) + (RL) [' (fG + fH)
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(2) If a ^p<q^x, then each of pU
g (1 + H) and

pTLq (1 — G)'1 exists and neither is zero,
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Introduction* In a recent paper [4], B. W. Helton solved the
rx

equation f(x) = h(x) + (RL) I (fG + /ff) using product integration.
All functions involved were required to be of bounded variation and
the existence of various integrals was also required. In a sub-
sequent paper [9], J. G. Helton was able to reduce the conditions
placed on h to being a quasicontinuous function although other
conditions such as requiring G and H to be of bounded variation
were maintained. In still another paper [7], J. C. Helton was able
to reduce the restrictions placed on G and H to that of being
product bounded but he also used other restrictions not used in [4]
or [9] such as requiring h to be a constant function and G(r, s) =
— G(s, r), a condition not unlike that of being additive. In this
paper we are concerned with obtaining a solution for the equation
f(x) = h(x) + (RL) \* (fG +fH) without requiring either G or H to
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be of bounded variation or that G(r, s) = —G(s, r) or that h be a
constant function. Instead, our major restriction placed on G and
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