ON CHARACTERIZATIONS OF EXPONENTIAL POLYNOMIALS

PHILIP G. LAIRD

This paper considers some characterizations of exponential polynomials in C(G), the set of all continuous complex valued functions on a σ -compact locally compact Abelian group G. For $f \in C(G)$, U_f will denote the subspace of C(G) obtained by taking finite linear combinations of translates of f. It is known that f is an exponential polynomial if and only if U_f is of finite dimension. Our main result is to show that f is an exponential polynomial when U_f is closed in C(G) if C(G) is given the topology of convergence uniform on all compact subsets of G.

Further characterizations of exponential polynomials are given when G is real Euclidean n-space, R^n .

A function $b \in C(G)$ is additive if b(x + y) = b(x) + b(y) for all $x, y \in G$ and $g \in C(G)$ is an exponential if g(x + y) = g(x)g(y) for all $x, y \in C(G)$. An exponential polynomial is a finite linear combination of terms $h = b_1^{q_1} b_2^{q_2} \cdots b_m^{q_m} g$ where b_1, b_2, \cdots, b_m are additive, q_1, q_2, \cdots, q_m are nonnegative integers and g is an exponential.

If f is an exponential polynomial, it is easy to see that U_f is finite dimensional. For if h is as above, then $T_{\alpha}h: x \to h(x - \alpha)$ is a finite linear combination of terms $b_1^{r_1}b_2^{r_2}\cdots b_m^{r_m}g$ for each $\alpha \in G$ where $r_j = 0, 1, \dots, q_j$ for $j = 1, 2, \dots, m$. A result of Engert [5] shows that if U_f is finite dimensional, then f is an exponential polynomial. The proof of this result when G is any σ -compact locally compact Abelian group is naturally more involved than when G is merely R or R^n . Proofs for the case of C(R) may be found in Anselone and Korevaar [1] and Loewner [8] who also refers to $C(R^n)$.

Throughout this paper, the only topology considered on C(G) is that of convergence uniform on all compact subsets of G. With Gbeing σ -compact, let G be the countable union of compact sets K_p . Let $S_p(f) = \sup\{|f(x)|: x \in K_p\}$ and $d(f, g) = \sum_{p=1}^{\infty} 2^{-p} \min(1, S_p(f-g))$ for $f, g \in C(G)$. Then d is a metric for C(G) and C(G) is complete in this metric.

With such a topology for C(G), if U_f is finite dimensional, it is closed. The converse to this is shown here (Theorem 3) so that in C(G),

f is an exponential polynomial $\longleftrightarrow U_f$ is finite dimensional $\longleftrightarrow U_f$ is closed in C(G).