A SELECTION THEOREM FOR GROUP ACTIONS

JOHN P. BURGESS

Let a Polish group G act continuously on a Polish space X, inducing an equivalence relation E. Let E_{γ} be the restriction of E to an invariant Borel subset Y of X. Assume E_{γ} is countably separated. Then it has a Borel transversal.

Throughout, let Γ be a continuous action of a Polish group G on a Polish space X. Thus X is a separable space admitting a complete metric, while G is a topological group whose topology is separable and admits a complete metric, and Γ is a continuous function $G \times X \to X$ satisfying $\Gamma(g^{-1}, \Gamma(g, x)) = x$ and $\Gamma(g, \Gamma(h, x)) = \Gamma(gh, x)$ for all $x \in X$ and $g, h \in G$. We write gx for $\Gamma(g, x)$, and for subsets of X write gA for $\{gx: x \in A\}$. Γ induces an equivalence relation E on X: xEy iff gx = y for some $g \in G$. $W \subset X$ is invariant if gW = W for all $g \in G$. Let $Y \subset X$ be an invariant Borel set, E_Y the restriction of E to Y. A transversal or selector-set for an equivalence relation is a set composed of exactly one representative from each equivalence class. Let us assume E_Y is countably separated, i.e., that there exist invariant Borel $Z_0, Z_1, Z_2, \cdots \subset Y$ such that for all $x, y \in Y$:

$$(0) \qquad xEy \longleftrightarrow \forall m(x \in Z_m \longleftrightarrow y \in Z_m)$$

our goal is to prove the following selection result:

THEOREM. Under the above hypotheses, E_{γ} has a Borel transversal. It should be mentioned that a number of special cases and overlapping results have been known to and applied by C^* -algebraists for some time now. The construction of the required transversal proceeds in four stages.

Stage A. It will prove convenient to reserve the letters m, n plain and with subscripts to range over the set I of natural numbers, and to reserve s, t plain and with subscripts to range over the set Q of finite sequences of natural numbers. We let s^*m denote the concatenation of s and m, i.e., s with m tacked on at the end. We wish to define Borel sets A(s) for overy $s \in Q$ of even length.

Case 1. $s = \text{the empty sequence } \emptyset$. Set $A(\emptyset) = Y$.

Case 2. s = a sequence (m, n) of length two. Set $A((m, n)) = Z_m$