CONCORDANCE AND HOMOTOPY, I: FUNDAMENTAL GROUP

M. A. GUTIERREZ

We study the effect of a concordance on the fundamental group of the manifolds involved.

DEFINITION (A). Two submanifolds X, Y of M^n are said to be concordant if there is an embedding $c: X \times I \to M \times I(I = [0, 1])$ which is transversal on $M \times \partial I$ and $c^{-1}(M^n \times \partial I) = X \times \partial I, c(X \times 0) = X = 0,$ $c(X \times 1) \approx Y \times 1.$

In [11], a similar definition—that of *I*-equivalence—is given for subcomplexes X, Y of a complex M by simply dropping all smoothness hypotheses from definition (A) and replacing them with cellularity hypotheses.

Let now G_1 be a group and G_i its lower central series (cf. § 1). Define $G_{\infty} = \bigcap G_i$ and $G = G_1/G_{\infty}$ ("group G_1 made residually nilpotent"). Observe $\{G_1/G_i, p_i\}$ is an inverse system where $p_i: G_1/G_{i+1} \rightarrow G_1/G_i$ is the obvious map. Let \tilde{G} be its limit (nilpotent completion) which is, in general, uncountable. There is a natural inclusion $G \rightarrow \tilde{G}$. In particular, if S is a space, define $\pi(S) = \pi_1(S)/[\pi_1(S)]_{\infty}$ and $\tilde{\pi}(S) = [\pi_1(S)]^{\sim}$.

DEFINITION (B). Two (finitely generated) groups are *I*-equivalent if their nilpotent completions are isomorphic.

Let now X, Y be subcomplexes of M. If we have some sort of Alexander duality (v. gr. M a manifold), so that we can prove $H_q(M-X) \approx H_q(M-Y)$, then [11], If X and Y are I-equivalent so are $\pi(M-X)$ and $\pi(M-Y)$. The moral here is that we might as well work with residually nilpotent groups. This we shall assume hereafter so that we have no need of writing "G₁" for a group G. We have in mind extending the above results to concordances: let be the free group in letters x_1, \dots, x_r . Define $G(x_1, \dots, x_r)$ (or G(x)) as the free product $G * \Phi$. Let $\partial_i : G(x) \to Z$ be the map defined by $\partial_i | G = 0, \ \partial_i(x_j) = \partial_{ij}$. Let now $W = \{w_1, \dots, w_r\}$ be an r-element subset of G(x), and let NW be the smallest normal subgroup of G(x) containing W. Assume the integral matrix $||\partial_i w_j||$ satisfies

$$(1) \qquad \qquad \det ||\partial_i w_j|| = \pm 1 \; .$$

Define $G(\xi_1, \dots, \xi_r)_1$ (or $G(\xi)_1$) as the quotient G(x)/NW. Let $G(\xi) = G(\xi)_1/G(\xi)_{\infty}$, a residually nilpotent group. If $i: G \to G(\xi)$ is the map $G \to G(x) \to G(x)/NW \to G(\xi)_1/G(\xi)_{\infty}$, we prove *i* is monic and