CONCORDANCE AND HOMOTOPY, I:
 FUNDAMENTAL GROUP

M. A. Gutierrez

We study the effect of a concordance on the fundamental group of the manifolds involved.

Definition (A). Two submanifolds X, Y of M^{n} are said to be concordant if there is an embedding $c: X \times I \rightarrow M \times I(I=[0,1])$ which is transversal on $M \times \partial I$ and $c^{-1}\left(M^{n} \times \partial I\right)=X \times \partial I, c(X \times 0)=X=0$, $c(X \times 1) \approx Y \times 1$.

In [11], a similar definition-that of I-equivalence-is given for subcomplexes X, Y of a complex M by simply dropping all smoothness hypotheses from definition (A) and replacing them with cellularity hypotheses.

Let now G_{1} be a group and G_{i} its lower central series (cf. §1). Define $G_{\infty}=\cap G_{i}$ and $G=G_{1} / G_{\infty}$ ("group G_{1} made residually nilpotent"). Observe $\left\{G_{1} / G_{i}, p_{i}\right\}$ is an inverse system where $p_{i}: G_{1} / G_{i+1} \rightarrow$ G_{1} / G_{i} is the obvious map. Let \widetilde{G} be its limit (nilpotent completion) which is, in general, uncountable. There is a natural inclusion $G \rightarrow$ \widetilde{G}. In particular, if S is a space, define $\pi(S)=\pi_{1}(S) /\left[\pi_{1}(S)\right]_{\infty}$ and $\tilde{\pi}(S)=\left[\pi_{1}(S)\right]^{\sim}$.

Definition (B). Two (finitely generated) groups are I-equivalent if their nilpotent completions are isomorphic.

Let now X, Y be subcomplexes of M. If we have some sort of Alexander duality (v. gr. M a manifold), so that we can prove $H_{q}(M-X) \approx H_{q}(M-Y)$, then [11], If X and Y are I-equivalent so are $\pi(M-X)$ and $\pi(M-Y)$. The moral here is that we might as well work with residually nilpotent groups. This we shall assume hereafter so that we have no need of writing " G_{1} " for a group G. We have in mind extending the above results to concordances: let be the free group in letters x_{1}, \cdots, x_{r}. Define $G\left(x_{1}, \cdots, x_{r}\right)$ (or $G(x)$) as the free product $G * \Phi$. Let $\partial_{i}: G(x) \rightarrow Z$ be the map defined by $\partial_{i} \mid G=0, \partial_{i}\left(x_{j}\right)=\delta_{i j}$. Let now $W=\left\{w_{1}, \cdots, w_{r}\right\}$ be an r-element subset of $G(x)$, and let $N W$ be the smallest normal subgroup of $G(x)$ containing W. Assume the integral matrix $\left\|\partial_{i} w_{j}\right\|$ satisfies

$$
\begin{equation*}
\operatorname{det}\left\|\partial_{i} w_{j}\right\|= \pm 1 \tag{1}
\end{equation*}
$$

Define $G\left(\xi_{1}, \cdots, \xi_{r}\right)_{1}$ (or $\left.G(\xi)_{1}\right)$ as the quotient $G(x) / N W$. Let $G(\xi)=G(\xi)_{1} / G(\xi)_{\infty}$, a residually nilpotent group. If $i: G \rightarrow G(\xi)$ is the $\operatorname{map} G \rightarrow G(x) \rightarrow G(x) / N W \rightarrow G(\xi)_{1} / G(\xi)_{\infty}, \quad$ we prove i is monic and

