ON A THEOREM OF MURASUGI

C. MCA. GORDON AND R. A. LITHERLAND

1. Let $l=k_1 \cup k_2$ be a 2-component link in S^3 , with k_2 unknotted. The 2-fold cover of S^3 branched over k_2 is again S^3 ; let $k_1^{(2)}$ be the inverse image of k_1 , and suppose that $k_1^{(2)}$ is connected. How are the signatures $\sigma(k_1)$, $\sigma(k_1^{(2)})$ of the knots k_1 and $k_1^{(2)}$ related? This question was considered (from a slightly different point of view) by Murasugi, who gave the following answer [Topology, 9 (1970), 283-298].

THEOREM 1 (Murasugi).

 $\sigma(k_1^{(2)}) = \sigma(k_1) + \xi(l) .$

Recall [4] that the invariant $\xi(l)$ is defined by first orienting l, giving, an oriented link \bar{l} , say, and then setting $\xi(l) = \sigma(\bar{l}) + Lk(\bar{k_1}, \bar{k_2})$, where σ denotes signature and Lk linking number.

In the present note we shall give an alternative, more conceptual, proof of Theorem 1, and in fact obtain it as a special case of a considerably more general result.

The idea of our proof is the following. If $l = l_1 \cup l_2$ is a link, partitioned into two sublinks l_1 and l_2 , then the 2-fold branched covers over l_1 , l_2 , and the whole of l, are all quotients of a $Z_2 \oplus Z_2$ cover branched over l. After possibly multiplying by 2, the diagram consisting of these branched covers bounds a corresponding diagram of 4-manifolds, and the signatures of the various links involved are expressible in terms of the signatures of these 4-manifolds (and the euler numbers of the branch sets); see e.g., [3]. The result is then a consequence of a relation among these 4-manifold signatures (Lemma 1).

This more general setting requires that we consider links in 3-manifolds other than homology spheres; in §2 we discuss the signature in this context. (It becomes necessary to prescribe a particular 2-fold branched cover. However, we sacrifice some generality inasmuch as we restrict ourselves to oriented, nullhomologous links: it would otherwise be necessary to prescribe a framing of the link as well.) In §3 we set up the diagram of covering spaces, and in §4 derive the relation between the signatures of the manifolds therein. Section 5 contains some consequences of this, including the appropriate generalization of Theorem 1.

All manifolds of dimensions 3 and 4 are to be oriented; manifolds of dimensions 1 and 2 are oriented only when this is explicitly