SUBSPACES OF POSITIVE DEFINITE INNER PRODUCT SPACES OF COUNTABLE DIMENSION

WERNER BÄNI

We deal with the following problem, proposed by I. Kaplansky in 1950: If V, \overline{V} are subspaces of an inner product space (E, Φ) of countable dimension over any field k, when does there exist a metric automorphism of (E, Φ) mapping V onto \overline{V} ? The present paper treats the case of *positive definite symmetric* spaces over k = R. We shall characterize the orbits (under the orthogonal group of (E, Φ)) of a large class of subspaces V by two sequences of cardinals attached to V in a natural way (if e.g., $V^{\perp} = 0$ or $V = V^{\perp \perp}$ only a few of them are $\neq 0$; the case $V^{\perp} = 0$ is covered by work of H. Gross). However, classifying the subspaces not in this class is equivalent to classifying vector spaces F endowed with a sequence $\Omega_0, \Omega_1, \Omega_2, \cdots$ of positive definite forms.

1. Introduction.

1.1. Let E be a real vector space of countable dimension, equipped with a positive definite symmetric bilinear form $\Phi: E \times E \rightarrow R$. We are concerned with the problem of classifying subspaces Vof E with respect to metric automorphisms of (E, Φ) or, in other words, of describing the orbits of subspaces of E under the action of the orthogonal group of (E, Φ) .

1.2. This problem of course originates from the wish to know how Witt's theorem generalizes to spaces of infinite dimension (the celebrated theorem says that every isometry between subspaces of a finite dimensional inner product space can be extended to the whole space). In fact, Kaplansky ([6], question 3, p. 16) stated the problem explicitly for arbitrary inner product spaces of countable dimension over any field k (in the case of uncountable dimensions the problem seems too nasty). Confirming a conjecture of Kaplansky, Gross [2] showed that in the presence of "sufficiently many" isotropic vectors (e.g., if Φ is alternate or if k is quadratically closed with char $(k) \neq 2$ and Φ is symmetric) the orbit of a subspace V may be characterized by seven cardinal numbers, namely the codimensions of neighboring spaces in the sublattice \Im of $\Re(E)$ (the lattice of all linear subspaces of E) generated \bot -stably by V (i.e., $X \in \Im \Rightarrow X^{\bot} \in \Im$).

1.3. For positive definite forms over ordered fields a case at the other extreme — the problem seems to be considerably harder.