PERMUTATIONS OF THE POSITIVE INTEGERS WITH RESTRICTIONS ON THE SEQUENCE OF DIFFERENCES, II

PETER J. SLATER AND WILLIAM YSLAS VÉLEZ

In this paper we discuss the following conjecture:

Conjecture: Let $D=\{D_1, \cdots, D_n\}, D\subset N, N$ the set of positive integers. Then there exists a permutation of N, call it $(a_k\colon k\in N)$ such that $\{|a_{k+1}-a_k|\colon k\in N\}=D$ iff $(D_1, \cdots, D_n)=1$.

We also consider the following question:

Question: For what sets $D = \{D_1, \dots, D_n\}$ does there exist an integer $M \in N$ and a permutation $\{b_k: k = 1, \dots, M\}$ of $\{1, \dots, M\}$ such that $\{|b_{k+1} - b_k|: k = 1, \dots, M-1\} = D$.

We answer the conjecture and the following question in the affirmative if the set D has the following property: For each $D_r \in D$ there is a $D_s \in D$ such that $(D_r, D_s) = 1$.

In the following, we shall say that $(a_k: k \in N)$, N the set of positive integers, is a permutation if every integer $n \in N$ appears once and only once in the sequence $(a_k: k \in N)$. Set $d_k = |a_{k+1} - a_k|$. In a previous paper, [1], we proved the following theorem.

THEOREM 1. Let $(m_j: j \in N)$ be any sequence of positive integers. Then there exists a permutation $(a_i: k \in N)$ such that $|\{i | d_i = j\}| = m_j$.

In constructing such permutations we could use infinitely many differences. We now ask if permutations of N can be constructed where the set of differences comes from a finite set. We make the following conjecture.

CONJECTURE. Let $D = \{D_1, \dots, D_n\}$, $D \subset N$. Then there exists a permutation $(a_k: k \in N)$ such that $\{d_k: k \in N\} = D$ iff $(D_1, \dots, D_n) = 1$, where (D_1, \dots, D_n) denotes the g.c.d. of the numbers, D_1, \dots, D_n .

In this paper we show that the condition is necessary and that it is sufficient if corresponding to each $D_r \in D$, there is a D_s such that $(D_r, D_s) = 1$.

For n = 1, the condition that the g.c.d. be 1 gives that $D = \{1\}$. For the set, $D = \{1\}$, set $a_k = k$. Clearly, $\{d_k : k \in N\} = 0$.

LEMMA 1. Let $D = \{D_1, \dots, D_n\}, D \subset N$. If there exists a permutation $(a_k: k \in N)$ such that $\{d_k: k \in N\} = D$, then $(D_1, \dots, D_n) = 1$.