THE DESCENDING CHAIN CONDITION RELATIVE TO A TORSION THEORY

ROBERT W. MILLER AND MARK L. TEPLY

A well-known theorem of Hopkins and Levitzki states that any left artinian ring with identity element is left noetherian. The main theorem of this paper generalizes this to the situation of a hereditary torsion theory with associated idempotent kernel functor σ . It is shown that if a ring R with identity element has the descending chain condition on σ -closed left ideals, then R has the ascending chain condition on σ -closed left ideals.

The remainder of the paper generalizes some results of Faith and Walker concerning artinian and quasi-Frobenius rings. In the case that the localization functor \mathscr{L}_{σ} is exact the following are obtained: (1) a sufficient condition for the ring R to have the descending chain condition on σ -closed left ideals and (2) characterizations of the condition that every σ -torsion-free injective left Rmodule is codivisible (projective).

In this paper R always denotes ring with identity element, and unless denoted to the contrary, all modules are members of the category R-mod of unital left R-modules.

A subfunctor σ of the identity functor on R-mod is called a left exact radical (or idempotent kernel functor) if σ is left exact and $\sigma(M/\sigma(M)) = 0$ for every module M. Such a σ naturally determines a torsion class $\mathcal{T}_{\sigma} = \{M | \sigma(M) = M\}$ and a torsion-free class $\mathcal{F}_{\sigma} =$ $\{M | \sigma(M) = 0\}$. The pair $(\mathcal{F}_{\sigma}, \mathcal{F}_{\sigma})$ forms a hereditary torsion theory in the sense of [2], [10], [13], [14] and [15]. Then \mathcal{T}_{σ} is closed under submodules, homomorphic images, direct sums, and extensions of one member of \mathcal{T}_{σ} by another; and \mathcal{F}_{σ} is closed under submodules, direct products, injective hulls, and extensions of one member of \mathcal{F}_{σ} by another. Also associated with σ is the localization functor \mathcal{L}_{σ} as defined in [2], [4], [13] or [14]. The module $\mathcal{L}_{\sigma}(R)$ can be made into ring by defining multiplication in a natural way; this ring will be denoted by Q_{σ} . A torsion theory is called *perfect* in [2], [12] and [13] if $\mathscr{L}_{\sigma}(M) \cong Q_{\sigma} \bigotimes_{\mathbb{R}} M$ for every module M. For additional details on the concepts discussed in this paragraph, the reader is referred to [2], [4], [9], [10], [13], [14], and their references.

A submodule N of M is called σ -closed if $M/N \in \mathscr{F}_{\sigma}$. The lattice of σ -closed submodules has been studied in [3], [5], [9], [12], [14], and [15]. Particular attention is usually given to chain conditions on σ -closed modules. We continue this investigation and focus our