THERE ARE 2^c NONHOMEOMORPHIC CONTINUA IN $\beta R^n - R^n$

ALICIA BROWNER WINSLOW

In this paper it is shown that for $n \ge 3$, $\beta R^n - R^n$ contains 2^c nonhomeomorphic continua. In the proof we will also construct c continua in $\beta R^3 - R^3$ with nonisomorphic first Cech cohomology groups and 2^c compacta in $\beta R^8 - R^3$ no two of which have the same shape.

Introduction. Much work has been done in the study of the Stone-Čech compactification of the natural numbers. Some of these results have been applied to the study of $\beta X - X$ for other topological spaces X, as in the proof of Frolik's result that $\beta X - X$ is not homogeneous for a nonpseudocompact space X (see [9]). Shape theory has offered new methods for examining βX and $\beta X - X$ that utilize the intrinsic topological properties of βX , as is illustrated in this paper in the case of βR^n . Using the fact that shape factors through Čech cohomology, we will construct c continua in $\beta R^3 - R^3$, no two of which have the same shape. Then, a particular embedding of subsets of the continua into βR^3 will exhibit 2° compacta in $\beta R^3 - R^3$ with different shapes. An easy modification of the compacta will yield 2° nonhomeomorphic continua in $\beta R^3 - R^3$, the proof of which utilizes the properties of shape dimension as developed by J. Keesling [5]. From this it follows that for $n \ge 3$ there are 2^{c} nonhomeomorphic continua in $\beta R^n - R^n$.

Preliminaries. Let βX denote the Stone-Čech compactification of a space X. For references, see Gillman and Jerison [2], or Walker [9]. $H^*(X)$ will denote the *n*-dimensional Čech cohomology of X with coefficients in Z based on the numerable covers of X. Also, $[X, S^1]$ will denote all homotopy classes of maps from X into S^1 , with the group structure induced by the group structure on S^1 . Since S^1 is a $K(Z, 1), H^1(X)$ is isomorphic to $[X, S^1]$. Finally, let $\prod A_i$ be the group $\prod_{i \in Z} A_i / \sum_{i \in Z} A_i$.

The following theorems will be used in this paper:

THEOREM 1 (Lemma 1.7 of [1]). For X normal and connected, there is an exact sequence $0 \to C(X)/C^*(X) \to [\beta X, S^1] \to [X, S^1] \to 0$ where C(X) is the additive group of real valued continuous functions on X, and $C^*(X)$ is the subgroup of bounded real continuous functions.

THEOREM 2 (Theorem 1.6 of [5]). Let $n \ge 1$ be an integer. Let