MODELLING EXPANSION IN REAL FLOWS

H. B. KEYNES AND M. SEARS

Dedicated to the memory of Rufus Bowen

We show that any real flow without fixed points is the homomorphic image of a suspension of the shift on a bisequence space and the homomorphism is one-to-one between invariant residual sets. If the original flow is onedimensional this homomorphism is an isomorphism. We then use this model of a real flow to lift \mathscr{F} -expansiveness for any class \mathscr{F} of continuous functions from the reals into the reals fixing zero, and thus generalize the results of Bowen and Walters [2]. Various other properties of the suspension model are discussed.

0. Introduction. In [2] Bowen and Walters introduced the concept of expansiveness for real flows relative to the class \mathscr{C} of all continuous functions from the reals into the reals which fix zero. In [5] this concept was extended to arbitrary transformation groups and to arbitrary classes \mathcal{F} of continuous functions from the acting group into itself which fixes the group identity. It is well-known (see [4]) that any expansive discrete flow can be lifted to a subshift and the authors of [2] managed to obtain an analogous result for real flows: every C-expansive real flow can be lifted to the suspension of a shift on a symbol space. Results of this type are also obtained for *F*-expansive discrete flows in [5] but no results were given for other transformation groups. The main direction of this paper is to extend the methods and results of [2] to show that every fixed point free \mathcal{F} -expansive real flow can be lifted to a suspension of a shift on a bisequence space (of course, not a finite symbol space in general) which is also \mathcal{F} -expansive. This generalizes the Bowen and Walters result and also covers situations where real flows can not be C-expansive but are expansive for subclasses \mathcal{F} , such as certain real flows on a 2-torus (see [5] and [3] for details).

Since the model that we obtain is independent of any expansive properties of the original flow, we also obtain a result of interest in its own right concerning real flows and suspensions. Birkhoff [1] pointed out that certain dynamical systems have a global cross section and can thus be regarded as real suspensions of discrete flows. Schwartzman [6] showed that for real flows on compact metric spaces, the property of possessing a global section was equivalent to the flow being a suspension over a discrete flow on that