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For all results obtained, attention is restricted to
algebraically closed fields of characteristic zero. An affine
algebraic group is said to have property (*) if the inter-
section of its center and its radical is unipotent. Given a
Lie algebra L, a characterization is obtained of those affine
algebraic groups G having property (*) for which an in-
jection L -> ̂ (G) exists whose image is algebraically dense.
This is applied to obtain a result concerning the embedding
of Lie algebras into algebraic Lie algebras, and to ques-
tions about the Hopf algebra of representative functions of
a Lie algebra L in the case where L is algebraic.

1» Introduction* Let L be a finite-dimensional Lie algebra
over a field F of characteristic zero. Let ^ ( L ) denote the universal
enveloping algebra of L. If ^ ( L ) is given a topology wherein the
two-sided ideals of finite codimension constitute a fundamental system
of neighborhoods of 0, then the continuous dual SffiJS) of ^ ( L ) is
the Hopf algebra of representative functions on <&(L). SίfiJU) may
be viewed as a two-sided ^(L)-module as follows: for u e %f(L)
and / 6 2ί?(L\ u / and f-u are defined by (u f)(x) = f(xu) and
(/ u)(x) = f(ux) for all x e %S(L).

An element / e SffiJS) is termed a semisimple element of βέf(L)
provided / is associated with a semisimple representation of L. That
is the case if and only if the left ^(L)-module %f(L) /, or equi-
valently the right ^(L)-module / ^ ( L ) , is semisimple. The sub-
algebra T of the trigonometric elements of 3ίf{L) consists of the
semisimple elements of SίfiJU) which are associated with representa-
tions that are trivial on the commutator ideal [L, L], The following
result is known from [1] and [2]. There exists a left ^(L)-stable
(or equivalently, left stable under the comultiplication of £ί?(L))
subalgebra B of ^f{L) satisfying the following:

(1) B is finitely-generated as an F-algebra;
(2) JT(L) = T0B;
(3) the subalgebra of the semisimple elements of B coincides

with the portion of 3f?(JS) annihilated by the radical of L by left
translation.

Any such subalgebra of SffiJS) is termed a normal basic subalgebra.
Since B is finitely-generated as an F-algebra, so is the smallest Hopf
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