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Introduction. We fix an algebraically closed field F' of
characteristic zero throughout. It is known that any pro-
affine algebraic group H over F' is the semidirect product
H,-H, of its unipotent radical H, and any maximal reductive
subgroup H,. This suggests, for considering extensions of
a unipotent pro-affine group U over F by H, only H, is
relevant. More precisely, one is led to ask whether, given
a homomorphism H — O(U) = Aut(U)/Inn(U) for which
Ext(H, U) is nonempty, the restriction map Ext(H, U)—
Ext(H,, U)# is bijective. The author has shown that this is
the case if U is affine. We will show that for unipotent
pro-affine U, the above restriction map is injective and that
it is surjective in the case where H = H, X H,, provided
that Ext(H, U) is nonempty. We will also obtain necessary
and sufficient conditions that Ext(H, U) be nonempty in case
both H and U are affine, U unipotent.

The first two results cited above are obtained via the case where
U = A is abelian, unipotent and pro-affine (i.e., a pro-vector group).
The main obstacle is the fact that the rational cochain groups
C"(H,, A) are not, in general, rational H,-modules unless A is affine.
This fact necessitates the technical maneuvers of the first three
sections.

In §4, we give a cohomology-free proof that the restriction
homomorphism Ext(H, A) — Ext(H,, A)” is an isomorphism when all
groups are affine, A unipotent and abelian. We also determine when
Ext(H, U) is nonempty, in terms of given homomorphism H — O(U),
when H and U are affine, U unipotent and not necessarily abelian.
The arguments of §4 where communicated to the author by Gerhard
Hochschild, and I am grateful for his allowing me to include them
here.

1. Some generalities on inverse limits. Throughout this section,
&7 is an arbitrary but fixed directed set. All inverse systems and
inverse limits have the subscript a ranging over .. & is a category
whose objects are at least groups and whose morphisms are group
homomorphisms, in which {0} is the zero object and exactness of a
sequence has the usual meaning. The same is true of the category
7, which is large enough to contain the image of the inverse limit
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