## EXTENSIONS OF PRO-AFFINE ALGEBRAIC GROUPS II

## BRIAN PETERSON

Dedicated to Gerhard Hochschild on the occasion of his 65th birthday

Introduction. We fix an algebraically closed field F of characteristic zero throughout. It is known that any proaffine algebraic group H over F is the semidirect product  $H_u \cdot H_r$  of its unipotent radical  $H_u$  and any maximal reductive subgroup  $H_r$ . This suggests, for considering extensions of a unipotent pro-affine group U over F by H, only  $H_u$  is relevant. More precisely, one is led to ask whether, given homomorphism  $H \rightarrow O(U) = \operatorname{Aut}(U)/\operatorname{Inn}(U)$  for which  $\operatorname{Ext}(H, U)$  is nonempty, the restriction map  $\operatorname{Ext}(H, U) \to$  $\operatorname{Ext}(H_u, U)^H$  is bijective. The author has shown that this is the case if U is affine. We will show that for unipotent pro-affine U, the above restriction map is injective and that it is surjective in the case where  $H=H_u imes H_r$ , provided that Ext(H, U) is nonempty. We will also obtain necessary and sufficient conditions that Ext(H, U) be nonempty in case both H and U are affine, U unipotent.

The first two results cited above are obtained via the case where U=A is abelian, unipotent and pro-affine (i.e., a pro-vector group). The main obstacle is the fact that the rational cochain groups  $C^n(H_u,A)$  are not, in general, rational  $H_r$ -modules unless A is affine. This fact necessitates the technical maneuvers of the first three sections.

In §4, we give a cohomology-free proof that the restriction homomorphism  $\operatorname{Ext}(H,A) \to \operatorname{Ext}(H_u,A)^H$  is an isomorphism when all groups are affine, A unipotent and abelian. We also determine when  $\operatorname{Ext}(H,U)$  is nonempty, in terms of given homomorphism  $H \to O(U)$ , when H and U are affine, U unipotent and not necessarily abelian. The arguments of §4 where communicated to the author by Gerhard Hochschild, and I am grateful for his allowing me to include them here.

1. Some generalities on inverse limits. Throughout this section,  $\mathscr{A}$  is an arbitrary but fixed directed set. All inverse systems and inverse limits have the subscript  $\alpha$  ranging over  $\mathscr{A}$ .  $\mathscr{C}$  is a category whose objects are at least groups and whose morphisms are group homomorphisms, in which  $\{0\}$  is the zero object and exactness of a sequence has the usual meaning. The same is true of the category  $\mathscr{D}$ , which is large enough to contain the image of the inverse limit