# ON A REMARKABLE CLASS OF POLYHEDRA IN COMPLEX HYPERBOLIC SPACE 

G. D. Mostow<br>Dedicated to Gerhard Hochschild on the occasion of his 65th birthday

The Selberg, Piatetsky-Shapiro conjecture, now established by Margoulis, asserts that an irreducible lattice in a semi-simple group $G$ is arithmetic if the real rank of $G$ is greater than one. Arithmetic lattices are known to exist in the real-rank one group $S O(n, 1)$, the motion group of real hyperbolic $n$-space, for $n \leqq 5$. These examples due to Makarov for $n=3$ and Vinberg for $n \leqq 5$ are defined by reflecting certain finite volume polyhedra in real hyperbolic $n$-space through their faces. The purpose of the present paper is to show that there are also nonarithmetic lattices in the real-rank one group $\mathrm{PU}(2,1)$, the group of motions of complex hyperbolic 2 -space which can be defined algebraically and leads to remarkable polyhedra. This serves to help determine the limits of the Selberg, Piatetsky-Shapiro conjecture. The analysis of these polyhedra also leads to the first known example of a compact negatively curved Riemannian space which is not diffeomorphic to a locally symmetric space.

This paper arose out of an attempt to determine the limits of validity of the Selberg, Piatetsky-Shapiro conjecture on the arithmeticity of lattice subgroups. In 1960 A. Selberg conjectured that apart from some exceptional $G$, an irreducible noncocompact lattice subgroup $\Gamma$ of a semi-simple group $G$ is arithmetic ("irreducible" in the sense that $\Gamma$ is not commensurable with a direct product of its intersections with factors of $G$ ). Later Piatetsky-Shapiro conjectured: An irreducible lattice of a semi-simple group $G$ is arithmetic if $\boldsymbol{R}$-rank $G>1$.

The Selberg, Piatetsky-Shapiro conjecture was settled affirmatively by G. A. Margoulis in the striking paper that he submitted to the 1974 International Congress of Mathematicians in Vancouver.

The simple groups of $\boldsymbol{R}$-rank 1 are (up to a local isomorphism)

$$
\mathrm{SO}(n, 1), \mathrm{SU}(n, 1), \mathrm{SP}(n, 1), F_{4}
$$

which act as isometries on the hyperbolic space

$$
\boldsymbol{R} h^{n}, \boldsymbol{C} h^{n}, \boldsymbol{H} h^{n}, O h^{2}
$$

over the real numbers $\boldsymbol{R}$, the complex numbers $\boldsymbol{C}$, the quaternions (or Hamiltonians) $\boldsymbol{H}$, the octonians (or Cayley numbers) $\boldsymbol{O}$ respectively. Nonarithmetic lattices in $\operatorname{SO}(2,1)\left(=\mathrm{SL}_{2}(\boldsymbol{R}) / \pm 1\right)$ have been

