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Let H be Zariski-dense analytic subgroup of the connected
linear complex algebraic group G. It is known that there
is a torus T in G with G = HT and H Π T discrete in H.
This paper gives equivalent conditions for H Π T to be trivial,
and considers the connection between these conditions and
left algebraic group structures on H induced from the
coordinate ring of G.

Let G be a connected linear complex algebraic group, and let H
be a Zariski-dense analytic subgroup of G which is integral in the
sense of [2, Defn. 1, p. 386]. In [10, Thm. 3] it was shown that
there exists an algebraic torus T in G with G ~ HT such that the
Lie algebra of T is a vector space complement to the Lie algebra
of H in the Lie algebra of G; T is called a complementary torus to
H in G. The principal results of this paper deal with conditions
under which such a complementary torus meets H trivially. The
existence of such a torus is connected, by [10, Prop. 6] and [10,
Prop. 7], to left algebraic group structures on H in the sense of [8,
Defn. 2.1].

We recall some terminology: let H be an analytic group, let / be
an analytic function on H, and let x be in H. Then x f (respectively,
f-x) is the function on H whose value at y is f(yx) (respectively,
f(PV))> f i s representative if {x f\xeH} spans a finite-dimensional
vector space, and R(R) denotes the Hopf algebra of all representative
functions on H [5]. A representative function / on H is semi-simple
if the representation of H on the span of {x f\x eH} is semi-simple,
and R(H)S denotes the subalgebra of all semi-simple representative
functions on H [5]* An analytic left algebraic group structure on H is
a finite-type C-subalgebra A on R(H) such that (1) if / e A and xeH,
f*xeA, and (2) evaluations at element of H correspond bijectively to
C-algebra maps from A to C [8, Defn. 2.1]. A nucleus of H is a
closed, solvable, simply connected normal subgroup K such that H/K is
reductive [6, p. 112]. An additive character of J ϊ i s a homomorphism
from H to the additive analytic group C and X+{H) is the free
abelian group of additive characters of H. H is an FR group if
H has a faithful finite-dimensional representation; if V is the space
of such a representation then H is a Zariski-dense analytic subgroup
of the Zariski-closure of H in GL(F) which is an algebraic group.
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