A NOTE ON TAMELY RAMIFIED POLYNOMIALS

J. P. BUHLER

Let f(x) be a monic polynomial with coefficients in a Dedekind ring A. If P is a prime ideal and A_P denotes the completion of A at P then f(x) is said to be integrally closed at P if $A_P[X]/(f(X))$ is isomorphic to a product of discrete valuation rings. The purpose of this note is to show that if f(x) appears to be tamely ramified and integrally closed at P (in terms of its discriminant and factorization mod P) then in fact it is.

If $f(\alpha) = 0$, where f(x) is a monic irreducible polynomial with coefficients in Z, then the ring $Z[\alpha]$ is of finite index in the ring R of algebraic integers in $Q(\alpha)$. The full ring of integers can be obtained by applying a very general algorithm due to Zassenhaus ([6]). There are well known cases where this is unnecessary. If, for instance, f(x) is an Eisenstein polynomial at p, or if p^2 does not divide the discriminant of f(x), then the polynomial f(x) is integrally closed at p (which is equivalent to saying that p does not divide the index $[R: Z[\alpha]]$). The theorem below asserts that if the power of p that divides the discriminant of f(x) is consistent with the factorization of f(x) mod P and the hypothesis that R is tamely ramified at p, then f(x) is integrally closed at p.

If P is a prime ideal in the Dedekind ring A let $v_P: A \to \mathbb{Z} \cup \{\infty\}$ denote the corresponding normalized valuation. Let d(g) and Disc (g) denote the degree and discriminant of a polynomial g(x).

THEOREM. Suppose that $f(x) \in A[x]$ is a monic polynomial that satisfies

(a) $f(x) \equiv \prod g_i(x)^{e_i} \mod P$

(b) $v_P(\text{Disc}(f)) = \Sigma_i (e_i - 1)d(g_i)$

where the $g_i(x) \in (A/P)[x]$ are distinct monic, irreducible and separable polynomials. Then f(x) is integrally closed at P. Moreover, $p \nmid e_i$ and $A_P[x]/(f(x))$ is isomorphic to a product of discrete valuation rings that are tamely ramified over A_P .

The proof given in the third section is an easy consequence of a purely local result given in the second section. The first section recalls some basic formulas concerning resultants.

REMARKS. (1) It is a standard fact that if f(x) is integrally closed and tamely ramified at P then conditions (a) and (b) must