ON THE BEHAVIOR OF A CAPILLARY SURFACE AT A RE-ENTRANT CORNER

NICHOLAS J. KOREVAAR

Changes in a domain's geometry can force striking changes in the capillary surface lying above it. Concus and Finn [1] first studied capillary surfaces above domains with corners, in the presence of gravity. Above a corner with interior angle θ satisfying $\theta < \pi - 2\gamma$, they showed that a capillary surface making contact angle γ with the bounding wall must approach infinity as the vertex is approached. In contrast, they showed that for $\theta \ge \pi - 2\gamma$ the solution u(x, y) is bounded, uniformly in θ as the corner is closed. Since their paper appeared, the continuity of u at the vertex has been an open problem in the bounded case. In this note we show by example that for any $\theta > \pi$ and any $\gamma \neq \pi/2$ there are domains for which u does not extend continuously to the vertex. This is in contrast to the case $\pi > \theta > \pi - 2\gamma$; here independent results of Simon [5] show that u actually must extend to be C^1 at the vertex.

We consider bounded domains Ω in \mathbb{R}^2 with piecewise smooth boundaries $\partial \Omega$, and functions u(x, y) satisfying

(i) div $Tu = 2H(u) = \kappa u$ in Ω ; $Tu = Du/\sqrt{1 + Du^2}$, H(u) = mean curvature of the surface z = u(x, y), $\kappa > 0$.

(ii) $Tu \cdot n = \cos \gamma$ on the smooth part of $\partial \Omega$; $0 \leq \gamma \leq \pi$, $n = \exp terior$ normal to $\partial \Omega$.

Physically u describes the capillary surface formed when a vertical cylinder with horizontal cross section Ω is placed in an infinite reservoir of liquid having rest height z = 0. Then

$$\kappa=rac{
ho g}{\sigma}$$
,

where

 $ho = ext{density of liquid}$ $g = (ext{downward}) ext{ acceleration of gravity}$ $\sigma = ext{surface tension between liquid and air.}$

$$\cos\gamma=\frac{\sigma_1}{\sigma}\,,$$

where

 σ_1 = surface attraction between liquid and cylinder.

Geometrically γ is the contact angle between the capillary surface and the bounding cylinder; it is the angle between the downward