CYCLIC VECTORS FOR *L^P (G)*

VIKTOR LOSERT AND HARALD RINDLER

If G is a first countable locally compact group, then $L^p(G)$ **has a cyclic vector with compact support, where** $1 \leq p < \infty$ **.**

In [3] Greenleaf and Moskowitz proved the existence of cyclic vectors for the left and right regular representation of $L^{2}(G)$, where *G* is a first countable, locally compact group, see also [4] and [5]. We generalize this result to $L^p(G)$ $(1 \leq p < \infty)$ and certain other $L^1(G)$ -modules.

THEOREM. *Let G be a locally compact group.*

(i) *If G is first countable, then there exists a continuous function u on G with compact support such that the left invariant hull of u is dense in* $L^p(G)$ *for* $1 \leq p < \infty$. The right hull of u (for *the corresponding right action of G on* $L^p(G)$ *is also dense in* $L^p(G)$ *.*

(ii) Conversely, if $1 \leq p < \infty$ and $L^p(G)$ has a cyclic vector, *then G is first countable.*

For the proof of the theorem we need two lemmas:

LEMMA 1. *Assume that H is a closed subgroup of G which is isomorphic to R. If the nonzero measure μ is concentrated on a compact subset of H, then* $\{f * \mu : f \in \mathcal{K}(G)\}$ *is dense in* $L^p(G)$ *for* $1 < p < \infty$.

Proof of Lemma 1. Define q by $1/q + 1/p = 1$. If the space defined above is not dense in *L^P (G),* there exists a nonzero continuous function $g \in L^q(G)$ such that $\langle f * \mu, g \rangle = 0$ for all $f \in \mathcal{K}(G)$, the space of continuous functions with compact support (if *g* is not continuous, replace g by $h * g \neq 0$, $h \in \mathcal{K}(G)$). Put $g^{(x)}(x) = g(x^{-1})(x \in G)$, then $\mu * g^{\times} = 0$ on *G*. Put $\mu_1 = \Lambda_g(\cdot)^{-1/q} \cdot \mu$ and for $y \in G$, $x \in H$, set $g_y(x) =$ $g(y^{-1}x)A_{\sigma}(x)^{+1/q}$ (A_{σ} denotes the modular function on *G*). By Weil's formula ([7], pp. 42-45) $g_y \in L^q(H)$ holds for a.e. $y \in G$. A short calculation shows that

$$
\mu_{\mathfrak{t}} * g_{\mathfrak{y}}^{\vee}(x) = \mu * g^{\vee}(xy) \Delta_G(x)^{-1/q} \quad \text{for} \quad x \in H.
$$

Since *g* is continuous we conclude that $\mu_{\text{I}} * g^{\vee}_{\text{I}} = 0$ on *H.* μ_{I} is con centrated on a compact subset of $H = R$ and nonzero. The Fourier transform $\hat{\mu}_i$ is an analytic function. It follows that it has at most countably many zeros. By [1] the set $\{f \ast \mu_i : f \in \mathcal{K}(H)\}$ is dense in