SQUARE-FREE AND CUBE-FREE COLORINGS OF THE ORDINALS

JEAN A. LARSON, RICHARD LAVER AND GEORGE F. MCNULTY

We prove: Theorem 1. The class of all ordinals has a square-free 3-coloring and a cube-free 2-coloring. Theorem 2. Every kth power-free *n*-coloring of α can be extended **to a maximal** *kth* **power-free ^-coloring of** *β,* **for some** $\beta \times \alpha \cdot \omega$, where $k, n \in \omega$.

Every ordinal is conceived as the set of all smaller ordinals; *ω* is^the least infinite ordinal. By an *interval of ordinals* we mean any set $\{\delta: \beta \leq \delta < \gamma\}$ where β and γ are ordinals; (β, γ) abbreviates $\{\delta: \beta \leq \delta < \gamma\}$. If *S* and *T* are intervals then there can be at most one order isomorphism from *S* onto *T.*

Let *S* be an interval of ordinals and *K* be a cardinal. A *tc-coloring* of *S* is just a function with domain *S* and range included in κ . Suppose S and T are intervals of ordinals and that f is a coloring of *S* while *q* is a coloring of *T*. Then the coloring *f* of *S* is *similar* to the coloring *g* of *T* provided *S* and *T* are order iso morphic and $f(\alpha) = g(h(\alpha))$ for all $\alpha \in S$ where *h* is the unique order isomorphism from *S* onto *T*; if *f* and *g* are clear from the context we say that *S* is similar to *T*. A coloring *f* of the ordinal α is *square-free* if no two adjacent nonempty intervals of α are similar; it is *cube-free* if no three consecutive nonempty intervals are all similar to each other. All these notions extend naturally to the class of all ordinals.

In Bean, Ehrenfeucht, and McNulty [1] it was shown that α has a square-free 3-coloring and a cube-free 2-coloring whenever $\alpha < (2^{\aleph_0})^+$ and the question of extending this result to all ordinals was left open. This question is resolved here.

THEOREM 1. *The class of all ordinals has a square-free Z-coloring and a cube-free 2-coloring.*

If *I* is a class of ordinals and α_{β} is an ordinal for each $\beta \in I$, then $\sum_{\beta \in I} \alpha_{\beta}$ denotes the *ordinal sum* of the α_{β} 's with respect to /. (See Sierpinski [2] for details.) Finite ordinal sums are written $\text{like} \quad \alpha_{\text{o}} + \alpha_{\text{i}} + \cdots + \alpha_{n-1}.$ For each $\beta \in I$, let $\text{Int}(\beta) = [\mu, \mu + \alpha_{\beta}]$ where $\mu = \sum_{\tau \in J} \alpha_{\tau}$ and $J = I \cap \beta$. For each $\beta \in I$, Int(β) is order isomorphic with α_{β} . In fact, $\sum_{\beta \in I} \alpha_{\beta}$ can be construed as the disjoint union of the Int(β)'s as $\beta \in I$ where the intervals are given the order type of *I*. This means that if f_{β} is a *k*-coloring of α_{β} ,