ON THE LATTICE OF ALL CLOSED SUBSPACES OF A HERMITIAN SPACE

HANS A. KELLER

The purpose of the paper is to prove the following THEOREM: Let *E* **be a vector space over a field** *K* **with char** $K \neq 2$, and let ϕ be a nondegenerate hermitian form **on** *E.* **Then the lattice of all orthogonally closed subspaces of** *(E, φ)* **is modular if and only if** *E* **is finite dimensional.**

Introduction. It is well known that the lattice of all orthogonally $($ =topologically) closed subspaces of a Hilbert space *H* is modular only if *H* has finite dimension (see Birkhoff—Von Neumann [1]). We shall prove here that this is true generally for vector spaces *E* over commutative fields K with char $K \neq 2$, supplied with nondegenerate hermitian forms *φ:* The lattice of all orthogonally closed subspaces of *(E, φ)* is modular if and only if *E* is finite dimensional. Non modularity in the infinite dimensional case is due to the fact that then there are always two closed subspaces with nonclosed sum. In a Hilbert space one can exhibit such pairs of subspaces in a constructive way (see [3]); our general case is much more involved, and their existence will follow from an indirect proof.

1. Denotations. Let E be a (left-) vector space over a commutative field K, and $\phi: E \times E \to K$ a hermitian form with respect to an automorphism $\alpha \mapsto \overline{\alpha}$ of period 2 of *K*. We always assume that char $K \neq 2$. We usually write (x, y) instead of $\phi(x, y)$, and we write $x \perp y$ if $(x, y) = 0$, $x, y \in E$. Let *F* be a subspace of (E, ϕ) . The orthogonal space of *F* is $F^{\perp} = \{x \in E : x \perp y \text{ for all } y \in F\}$, and the radical of F is rad $F = F \cap F^{\perp}$. F is called semisimple if rad $F = 0$. In particular, *E* is semisimple if $E^{\perp} = 0$, i.e., if ϕ is nondegenerate. A subspace F is called orthogonally closed if $F =$ $F^{\perp\perp}$ (=(F^{\perp})^{\perp}). All bases of vector spaces are algebraic. *F* is termed euclidean if it is semisimple and admits an orthogonal basis. Semi simple subspaces of countable dimension are always euclidean (see [2]). Every $x \in E$ induces a linear form ϕ_x on F, given by $\phi_x(z) =$ $\phi(z, x)$, $z \in F$. We let F^* denote the antispace of the dual space of *F*, i.e., the *K*-space of all linear forms $f: F \to K$, where $(f + g)(z) =$ $f(z) + g(z)$ and $(\alpha f)(z) = \overline{\alpha} \cdot f(z)$, $f, g \in F^*$, $\alpha \in K$. If $F^{\perp} = 0$ then E can be considered as a subspace of F^* , identifying $x \in E$ with ϕ_x .

If $E = \bigoplus_{i \in I} E_i$, and $E_i \perp E_j$ for $i \neq j$, we write $E = \bigoplus_{i \in I} E_i$.

2. The lattice $\mathscr{L}(E, \phi)$. Let (E, ϕ) be a semisimple hermitian