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A NOTE ON GAP-FREQUENCY PARTITIONS

D. M. BRESSOUD

George Andrews has introduced gap-frequency partitions
in order to interpret the Rogers-Selberg ^-series identities
related to the modulus seven. In this paper, we give a direct
derivation of the generating function for such partitions.
Our approach makes it much easier to extend and generalize
the notion of gap-frequency partitions.

L. J. Rogers is known today primarily for his discovery of the
Rogers-Ramanujan identities:
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These analytic identities came to prominence largely because of P. A.
MacMahon's combinatorial interpretation of them:

( 3 ) For r = 1 or 2, and any positive integer n, the partitions
of n into parts not congruent to 0, ± r mod 5 are equi-
numerous with the partitions of n into parts with differ-
ence at least two between parts, and in which one appears
as a part at most r — 1 times.

Statement (3) can be proved from equations (1) and (2) by viewing
each side of the equations as a generating function (see [3], § 19.13),

It is less well known that Rogers also discovered similar identities
for the modulus 7:
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