AN ANALOGUE OF THE WIENER-TAUBERIAN THEOREM FOR SPHERICAL TRANSFORMS ON SEMI-SIMPLE LIE GROUPS

Alladi Sitaram

Let G be a semi-simple connected noncompact Lie group with finite center and K a fixed maximal compact subgroup of G. Fix a Haar measure dx on G and let $I_1(G)$ denote those functions in $L^1(G, dx)$ which are biinvariant under K. The purpose of this paper is to prove that if $f \in I_1(G)$ is such that its spherical Fourier transform (i.e., Gelfand transform) \hat{f} is nowhere vanishing on the maximal ideal space of $I_1(G)$ and \hat{f} "does not vanish too fast at ∞ ", then the ideal generated by f is dense in $I_1(G)$. This generalizes earlier results of Ehrenpreis-Mautner for G=SL(2, R)and R. Krier for G of real rank one.

1. Introduction. Let f be an L^1 -function on R (or more generally on a locally compact abelian group). Then the celebrated Wiener-Tauberian theorem says that if the Fourier transform \hat{f} is a nowhere vanishing function then the ideal generated by f is dense in $L^1(R)$. In [1] Ehrenpreis and Mautner observe that the corresponding result is not true if one considers the commutative Banach algebra of K-biinvariant functions on noncompact semisimple Lie group G, where K is a maximal compact subgroup of G. More precisely, let G = SL(2, R) i.e., the group of 2×2 real matrices of determinant 1, and

$$K={
m SO}(2)=\left\{egin{pmatrix} \cos heta&\sin heta\ -\sin heta&\cos heta\end{pmatrix}$$
; $0\le heta\le 2\pi
ight\}$ and let

 $I_1(G)$ denote the commutative Banach algebra of K-biinvariant L^1 -functions on G. For $f \in I_1(G)$, let \hat{f} denote its spherical Fourier transform (see § 2). Then Ehrenpreis and Mautner observed that there exist functions $f \in I_1(G)$ such that \hat{f} does not vanish anywhere on the maximal ideal space of $I_1(G)$ and yet the algebra generated by f is not dense in $I_1(G)$. However they were able to show that if \hat{f} is non vanishing and \hat{f} 'does not go to zero too fast at ∞ ' then the ideal generated by f is indeed dense in $I_1(G)$. (Theorems 6 and 7 of [1].) These results have been generalized by R. Krier [6] in his thesis when G is a noncompact connected semi-simple Lie group of real rank 1. (The author does not know whether Krier's results have been published.) The purpose of this note is to prove a theorem in the spirit of Theorem 7 of [1] without any restriction