EFFECTIVE DIVISOR CLASSES AND BLOWINGS-UP OF P^2

JEFFREY A. ROSOFF

Let $X_n \xrightarrow{\pi} P^2$ be the monoidal transformation of the (complex) projective plane centered at distinct points P_1, \dots, P_n of P^2 . We recall that the Néron-Severi group of X_n is freely generated by the divisor class [L] of the proper transform L of a line in P^2 and by the classes $[E_i]$ of the "exceptional" fibers E_i over P_i ; the intersection pairing is given by

 $[L]^2 = 1; \quad [L] \cdot [E_i] = 0; \quad [E_i] \cdot [E_j] = -\delta_{i,j}.$

Let $\mathcal{M}(X_n)$ denote the monoid of elements F in the Néron-Severi group with the property that F contains an effective divisor. In this paper we

(1) construct a finite generating set for $\mathcal{M}(X_n)$ for $n \leq 8$, and give a particularly simple geometric description of the generators when $P_1 \cdots P_n$ are in "general position";

(2) show that, for $n \ge 9$, $\mathscr{M}(X_n)$ need not be finitely generated, despite the finite generation of the whole Néron-Severi group;

(3) prove the related result that if a nonsingular surface X contains an infinite number of exceptional curves of the first kind, then X is necessarily rational.

We will let K_{X_n} denote the cannonical class on X_n ; it is given by $K_{X_n} = \pi * K_{P^2} + \Sigma[E_i] = -3[L] + \Sigma[E_i]$. We observe that, for $n \leq 9$, the anti-cannonical class $-K_{X_n}$ contains an effective divisor (which will also be denoted by $-K_{X_n}$ when no confusion is possible), since $H^0(X_n, \check{\omega}_{X_n})$ can be regarded as the (complex) vector space of homogeneous forms in 3 variables of degree 3 vanishing at the points $P_1 \cdots P_n$.

LEMMA 1. Let X be any nonsingular rational surface, and let C be a curve on X with $p_a(C) \ge 1$. Then $[C] + K_x$ is an effective class.

Proof. The short exact sequence of \mathcal{O}_x -modules

 $0 \longrightarrow \mathcal{O}_{X}(-C) \longrightarrow \mathcal{O}_{X} \longrightarrow \mathcal{O}_{C} \longrightarrow 0$

yields, using Serre-duality and the rationality of X, dim $H^{0}(X, \mathcal{O}_{X}(C) \otimes \omega_{X}) = \dim H^{2}(X, \mathcal{O}_{X}(-C)) = \dim H^{1}(C, \mathcal{O}_{C}) = p_{a}(C).$

Recall that, for $n \leq 8$, the points $P_1 \cdots P_n$ of P^2 are in general