HOMOTOPY CLASSIFICATION OF LENS SPACES FOR ONE-RELATOR GROUPS WITH TORSION

SUSHIL JAJODIA

Let \mathcal{Z} be a one-relator group with presentation $\mathscr{R} = (x_1, \cdots, x_n; R^p)$ where R is not a proper power and $p \geq 2$. Then given any integer q, relatively prime to p, we can construct the Lens space $\mathscr{L}(p,q)$ for \mathcal{Z} from the cellular model $C(\mathscr{R})$ of the presentation \mathscr{R} by attaching a 3-cell via the attaching map $R^q - 1$, which generates the ideal $Z\mathcal{Z}(R-1) \approx \pi_2(C(\mathscr{R}))$. In this paper we classify these Lens spaces up to homotopy type. We also discuss the non-cancellation aspect of these Lens spaces.

Introduction. In this paper we are interested in Lens spaces for one-relator groups with torsion. Given relatively prime integers p and q, with $p \ge 2$, we have the ordinary Lens space L(p, q) with fundamental group finite cyclic of order p. The 2-skeleton of L(p, q)is the cellular model $C(\mathscr{R})$ of the presentation

$$\mathscr{R} = (x; x^p)$$

and L(q, p) is obtained from its 2-skeleton by attaching a 3-cell via the attaching map $x^q - 1$, which generates the ideal $ZZ_p(x-1) \approx \pi_2(C(\mathscr{R}))$. The cellular chain complex of the universal covering $\widetilde{L}(p, q)$ of L(p, q) is given by

$$C_*(L(p, q)) \colon ZZ_p \xrightarrow{x^q - 1} ZZ_p \xrightarrow{1 + x + \dots + x^{p-1}} ZZ_p \xrightarrow{x - 1} ZZ_p$$

where x is a generator of the cyclic group Z_p . J. H. C. Whitehead [11] has shown that L(p, q) and L(p, r) have the same homotopy type if and only if qr or -qr is a quadratic residue mod p. We consider the following analogue: Let Ξ be a one-relator group with presentation

$$(1) \qquad \qquad \mathscr{R} = (x_1, \cdots, x_n; R^p)$$

where R is not a proper power and $p \ge 2$. Then given any integer q, relatively prime to p, we can construct the Lens space $\mathscr{L}(p,q)$ obtained from the cellular model $C(\mathscr{R})$ of the presentation R by attaching a 3-cell via the attaching map $R^q - 1$, which generates the ideal $Z\Xi(R-1) \approx \pi_2(C(\mathscr{R}))$. Clearly the fundamental group of $\mathscr{L}(p,q)$ is isomorphic to Ξ . The cellular chain complex for the universal covering $\mathscr{L}(p,q)$ of the Lens space $\mathscr{L}(p,q)$ is given by

$$C_*(\widetilde{\mathscr{L}}(p, q)): Z\Xi \xrightarrow{R^q - 1} Z_{\Xi} \xrightarrow{\partial_2} (Z\Xi)^n \xrightarrow{\partial_1} Z\Xi$$