THE BOUNDARY MODULUS OF CONTINUITY OF HARMONIC FUNCTIONS

ELGIN H. JOHNSTON

Let G be a bounded domain in the complex plane and let u(z) be continuous on \overline{G} . In this paper we study the boundary modules of continuity, $\tilde{\omega}(\delta)$, of u on ∂G and the modulus of continuity, $\omega(\delta)$, of u on \overline{G} . We investigate the extent to which the inequality " $\omega(\delta) \leq \tilde{\omega}(\delta)$ " holds when u is harmonic on G and show that the precise formulation of such inequalities depends on the smoothness of ∂G .

1. Introduction. Let G be a bounded domain in the complex plane and let u(z) be continuous on \overline{G} . The modulus of continuity (MOC) of u(z) on \overline{G} is the function $\omega_u(\delta, \overline{G})$ defined for $\delta \ge 0$ by

$$\omega_u(\delta, \overline{G}) = \sup \left\{ |u(z) - u(z')| : z, z' \in \overline{G}, |z - z'| \leq \delta
ight\}.$$

Thus $\omega_u(\delta, G)$ is nondecreasing and $\lim_{\delta \to 0^+} \omega(\delta) = \omega(0) = 0$. If \bar{G} is, say, convex, then $\omega_u(\delta)$ is subadditive and continuous. The boundary modulus of continuity (BMOC) is denoted $\tilde{\omega}_u(\delta, \partial G)$ and defined by

$$\widetilde{\omega}_{u}(\delta, \,\partial G) = \sup \left\{ |u(\zeta) - u(\zeta')| : \zeta, \, \zeta' \in \partial G, \, |\zeta - \zeta'| \leq \delta \right\}.$$

When no confusion should arise, we will simply write $\omega(\delta)$ and $\tilde{\omega}(\delta)$.

It is clear that $\tilde{\omega}_u(\delta, \partial G) \leq \omega_u(\delta, \overline{G})(\delta \geq 0)$, and that if u(z) is simply continuous on \overline{G} , little more can be said. In this paper we investigate the extent to which the reverse inequality holds for u(z)harmonic (or analytic) on G.

Rubel, Taylor and Shields [6, p. 31] have proved the following result for u analytic.

THEOREM. Let G be simply connected and let $\phi(\delta)(\delta \ge 0)$ be a continuous increasing, nonnegative subadditive function. Then for u(z) analytic on G, continuous on \overline{G} ,

$$ilde{\omega}(\delta) \leqq \phi(\delta) \Longrightarrow \omega(\delta) \leqq C \phi(\delta)$$
 ,

where C is an absolute constant, independent of G. It can be shown that C > 1 is necessary.

For u(z) harmonic, it is known that if $G = D = \Delta(0, 1)$ is the unit disk and u(z) is harmonic on D, continuous on \overline{D} , then

$$(1)$$
 $\omega(\delta) \leq C \Big(\log rac{1}{\delta} \Big) \widetilde{\omega}(\delta) \qquad \Big(0 < \delta \leq rac{1}{2} \Big) \, ,$