STRONG LIFTINGS COMMUTING WITH MINIMAL DISTAL FLOWS

RUSSELL A. JOHNSON

In this paper, we treat an aspect of the following problem. If a compact Hausdorff space X is given, and if T is a group of homeomorphisms of X which preserves a measure μ , then find conditions under which $M^{\infty}(X, \mu)$ admits a strong lifting (or strong linear lifting) which commutes with T. We will prove the following results.

Introduction. (1) Let (X, T) be a minimal distal flow. Then there exists an invariant measure μ such that $M^{\infty}(X, \mu)$ admits a strong linear lifting ρ commuting with T. The linear lifting ρ is "quasi-multiplicative" in the sense that $\rho(f \cdot g) = \rho(f) \cdot \rho(g)$ if $f \in C(X)$ and $g \in M^{\infty}(X, \mu)$. In particular, if (X, T) admits a unique invariant measure μ , then $M^{\infty}(X, \mu)$ admits ρ as above. This result may be viewed as a generalization of "Theorem LCG" of A. and C. Ionescu-Tulcea [7]; see 1.7. If T is abelian, then $M^{\infty}(X, \mu)$ admits a strong *lifting*.

(2) Let G be a compact group with Haar measure μ . Then $M^{\infty}(G, \mu)$ admits a strong linear lifting ρ (which is quasi-multiplicative), which commutes with both left and right multiplications on G.

The author would like to thank the referee for correcting and improving Corollary 3.10.

Preliminalies.

NOTATION 1.1. Let X be a compact Hausdorff space. If μ is a positive Radon measure on X, let $M^{\infty}(X, \mu)$ be the set of bounded, μ -measurable, complex-valued functions on X. Let $L^{\infty}(X, \mu)$ be the set of equivalence classes in $M^{\infty}(X, \mu)$ under the (usual) equivalence relation: $f \sim g \Leftrightarrow f - g = 0$ μ - a.e. If E is a Banach space, let $M^{\infty}(X, E, \mu) = \{f: X \to E \mid f \text{ is weakly } \mu$ -measurable, and Range (f) is precompact}. (Recall $f: X \to E \mid$ is weakly μ -measurable if $x \to \langle f(x), e' \rangle$ is μ -measurable for all e' = E' = topological dual of E.)

DEFINITIONS 1.2. Let X, μ be as in 1.1. A map ρ of $M^{\infty}(M, \mu)$ to itself is a *linear lifting* of $M^{\infty}(X, \mu)$ if: (i) $\rho(f) = f \ \mu - a.e.$; (ii) $f = g \ \mu - a.e. \Rightarrow \rho(f) = \rho(g)$ everywhere; (iii) $\rho(1) = 1$; (iv) $f \ge 0 \Rightarrow$ $\rho(f) \ge 0$; (v) $\rho(af + bg) = a\rho(f) + b\rho(g)$ (f, $g \in M^{\infty}(X, \mu)$; a, $b \in C$). If, in addition, (vi) $\rho(f \cdot g) = \rho(f) \cdot \rho(g)$ for all $f, g \in M^{\infty}(M, \mu)$, then ρ