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STRONG LIFTINGS COMMUTING WITH
MINIMAL DISTAL FLOWS

RUSSELL A. JOHNSON

In this paper, we treat an aspect of the following problem.
If a compact Hausdorff space X is given, and if T is a group
of homeomorphisms of X which preserves a measure μ9 then
find conditions under which M^iX, μ) admits a strong lifting
(or strong linear lifting) which commutes with T. We will
prove the following results.

Introduction* ( 1 ) Let (X, T) be a minimal distal flow. Then

there exists an invariant measure μ such that M°°(X, μ) admits a
strong linear lifting p commuting with T. The linear lifting p is
"quasi-multiplicative" in the sense that p(f g) = p(f) ρ(g) if fe C(X)
and g eM°°(X, μ). In particular, if (X, T) admits a unique invariant
measure μf then Λf°°(X, μ) admits p as above. This result may be
viewed as a generalization of "Theorem LCG" of A. and C. Ionescu-
Tulcea [7]; see 1.7. If T is abelian, then M°°(X, μ) admits a strong
lifting.

(2) Let G be a compact group with Haar measure μ. Then
M°°(G, μ) admits a strong linear lifting p (which is quasi-multiplica-
tive), which commutes with both left and right multiplications on
G.

The author would like to thank the referee for correcting and
improving Corollary 3.10.

Preliminalies*

NOTATION 1.1. Let X be a compact HausdorfF space. If μ is a
positive Radon measure on X, let M°°(X, μ) be the set of bounded,
μ-measurable, complex-valued functions on X. Let L°°(X, μ) be the
set of equivalence classes in M°°(X, μ) under the (usual) equivalence
relation: f ~ g<=> f ~ g ="0 μ — a.e. If E is a Banach space, let
M~(X, E, μ) = {f:X->E\f is weakly ^-measurable, and Range (/)
is precompact}. (Recall f:X->E\ is weakly μ-measurable if x—>
(f(x), e') is μ-measurable for all e' = E' = topological dual of E.)

DEFINITIONS 1.2. Let X, μ be as in 1.1. A map p of M°°(M, μ)
to itself is a linear lifting of M°°(X, μ) if: (i) p(f) — f μ — a.e.; (ii)
f=gμ — a.e. => ρ(f) = ρ(g) everywhere; (iii) p(l) = 1; (iv) / ^ 0 ==>
p(f) ^ 0; (v) p(af + bg) = ap(f) + bp(g) (/, g e M~(X, μ); a, b e C). If,
in addition, (vi) ρ(f-g) = ρ(f) ρ(g) for all f, g eM°°(M, μ), then p
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