ANALYTIC FUNCTIONS IN TUBES WHICH ARE REPRESENTABLE BY FOURIER-LAPLACE INTEGRALS

RICHARD D. CARMICHAEL AND ELMER K. HAYASHI

Spaces of analytic functions in tubes in $Cⁿ$ which gen eralize the Hardy H^p spaces are defined and studied. In addition Cauchy and Poisson integrals of distributions in *&Lv* are analyzed.

1. Introduction. Bochner ($[1]$ and $[2]$) has defined the Hardy $H^2(T^c)$ spaces for tubes $T^c = \mathbb{R}^n + iC$ in \mathbb{C}^n where $C \subset \mathbb{R}^n$ is an open convex cone. Stein and Weiss [11] have studied the $H^p(T^B)$ spaces for arbitrary $p > 0$ and with respect to tubes T^B , B being an open proper subset of R^* [11, pp. 90-91]. Vladimirov [12, §§ 25.3-25.4] has considered analytic functions in *T^c , C* being an open connect ed cone, which satisfy the growth [12, p. 224, (64)]. Vladimirov has stated [12, p. 227, lines 4-5] that the growth which defines the H^2 functions of Bochner is more restrictive than [12, p. 224, (64)]. We show in this paper that the H^2 growth is not more restrictive than [12, p. 224, (64)] by showing that the functions of Vladimirov are exactly the H^2 functions. However, Vladimirov's growth has led us to define new spaces of analytic functions in tubes which have growth estimates that are more general than that of the $H^p(T^B)$ spaces, and we analyze these new spaces in this paper. Further, we study Cauchy and Poisson integrals of distributions in \mathscr{D}'_{L} p.

The n -dimensional notation in this paper is described in [7, p. 386]. The definitions of a cone in \mathbb{R}^n , projection of a cone pr(C), compact subcone, and dual cone $C^* = \{t \in \mathbb{R}^n : \langle t, y \rangle \geq 0, y \in C\}$ of a cone *C* are given in [12, p. 218]. Terminology concerning distribu tions is that of Schwartz [10]. The support of a distribution or function g is denoted supp (g) . Definitions, properties, and relevant topologies of the function spaces $\mathscr{S}, \mathscr{D}_{L^p}, \mathscr{B} = \mathscr{D}_{L^{\infty}}$, and $\dot{\mathscr{B}}$ and of the distribution spaces \mathscr{S}' and \mathscr{D}'_{L^p} are in [10]. The L^1 and \mathscr{S}' Fourier and inverse Fourier transforms are defined in [7, pp. 387-388] and [10, p. 250], respectively. The limit in the mean Fourier and inverse Fourier transforms of functions in L^p , $1 < p \leq 2$, and L^q , $(1/p) + (1/q) = 1$, are in [8] and [3]. $\mathscr{F}[\phi(t); x]$ ($\mathscr{F}^{-1}[\phi(x); t]$) denotes the Fourier (inverse Fourier) transform of a function in the relevant sense. If $V \in \mathcal{S}'$ we denote its Fourier (inverse Fourier) $\text{transform} \quad \text{by} \quad \mathscr{F}[V] = \hat{V} \ \ (\mathscr{F}^{-1}[V]). \quad \text{For} \quad \phi \in L^p, \ 1 < p \leq 2, \ \text{the}$ Parseval inequality is