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BOUNDARY VALUE PROBLEMS FOR PARTIAL
FUNCTIONAL DIFFERENTIAL EQUATIONS

SAMUEL M. RANKIN, III

Sufficient conditions are given to ensure the existence
of solutions for the boundary value problem

(1) y(t) = T(t)φ(O) + Γ T(t - s)F(ys)ds O^tSb
•Jo

(*) Myo + Nyb^f , feC(=C([~r,0];B) by def.) .

It is assumed that T(t)y t ̂  0, is a strongly continuous semi-
group of bounded linear operators on the Banach space B
and T(t), t ̂  0, has infinitesimal generator A. The function
F is continuous from C to B and M and N are bounded
linear operators defined on C.

Denote by C the Banach space of continuous functions from
r, 0] into the Banach space B, where for each φeC, \\φ\\c ~

g0<rO sup 11̂ (0)11. Let A be the infinitesimal generator of a
strongly continuous semigroup of linear operators T(t), t ^ 0 mapping
B into B and satisfying | T(t)\ <̂  eωt for some real ω. We let F be
a nonlinear continuous function from C into B. If y(t) is a continu-
ous function from [0, T] to B for some Γ > 0, define the element
yteC by #t(0) — y(t + θ). Throughout this paper the reference y(t)
is a solution of Equation (1) (*) will mean y(t) satisfies Equation (1)
and the boundary condition (*). The statement y(φ)(t) is a solution
of Equation (1) will mean y(t) satisfies Equation (1) and the initial
condition yQ = φ. The notation Equation (1) without (*) will always
denote the initial value problem.

In a recent paper [8] C. Travis and G. Webb have considered
initial value problems for Equation (1). With F satisfying

(2) \\F(φ)-F{φ)\\i£L\\φ-φ\\a

for some L > 0 and φ, ψeC, Travis and Webb obtain the existence
of unique solutions of Equation (1) for each φeC. In another paper
W. E. Fitzgibbon [2] has shown that global solutions of Equation
(1) exist if F satisfies for each φeC

(3) 11^(9)11^X111911* + I ζ for some KuK2eR,

and if T(t), t > 0 is compact.
When Equation (1) has unique solutions for each φeC, the

mapping U(t)φ — yt(φ) is well defined for each t ^ 0 and φeC. Here
yt(φ) represents the element of C such that y(φ)(t) is a solution of
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