BOUNDARY VALUE PROBLEMS FOR PARTIAL FUNCTIONAL DIFFERENTIAL EQUATIONS

SAMUEL M. RANKIN, III

Sufficient conditions are given to ensure the existence of solutions for the boundary value problem

(1)
$$y(t) = T(t)\phi(0) + \int_0^t T(t-s)F(y_s)ds \quad 0 \le t \le b$$

(*)
$$My_{\mathfrak{o}}+Ny_{\mathfrak{o}}=\psi$$
, $\psi\in C(=C([-r,0];B)$ by def.).

It is assumed that T(t), $t \ge 0$, is a strongly continuous semigroup of bounded linear operators on the Banach space Band T(t), $t \ge 0$, has infinitesimal generator A. The function F is continuous from C to B and M and N are bounded linear operators defined on C.

Denote by C the Banach space of continuous functions from [-r, 0] into the Banach space B, where for each $\varphi \in C$, $||\varphi||_{\mathcal{C}} = \sup_{-r \leq \theta \leq 0} \sup ||\varphi(\theta)||$. Let A be the infinitesimal generator of a strongly continuous semigroup of linear operators T(t), $t \geq 0$ mapping B into B and satisfying $|T(t)| \leq e^{\omega t}$ for some real ω . We let F be a nonlinear continuous function from C into B. If y(t) is a continuous function from [0, T] to B for some T > 0, define the element $y_t \in C$ by $y_t(\theta) = y(t + \theta)$. Throughout this paper the reference y(t) is a solution of Equation (1) (*) will mean y(t) satisfies Equation (1) and the boundary condition (*). The statement $y(\varphi)(t)$ is a solution of Equation (1) will mean y(t) satisfies Equation (1) and the initial condition $y_0 = \varphi$. The notation Equation (1) without (*) will always denote the initial value problem.

In a recent paper [8] C. Travis and G. Webb have considered initial value problems for Equation (1). With F satisfying

$$||F(\varphi) - F(\bar{\varphi})|| \leq L ||\varphi - \bar{\varphi}||_c$$

for some L > 0 and φ , $\overline{\varphi} \in C$, Travis and Webb obtain the existence of unique solutions of Equation (1) for each $\varphi \in C$. In another paper W. E. Fitzgibbon [2] has shown that global solutions of Equation (1) exist if F satisfies for each $\varphi \in C$

$$(3) ||F(\varphi)|| \leq K_1 ||\varphi||_c + K_2 ext{ for some } K_1, K_2 \in R,$$

and if T(t), t > 0 is compact.

When Equation (1) has unique solutions for each $\varphi \in C$, the mapping $U(t)\varphi = y_t(\varphi)$ is well defined for each $t \ge 0$ and $\varphi \in C$. Here $y_t(\varphi)$ represents the element of C such that $y(\varphi)(t)$ is a solution of