ON THE DECOMPOSITION OF STATES OF SOME *-ALGEBRAS

FRANÇOISE MATHOT

We study the direct integral decomposition of Op^* -algebras defined on a metrizable, dense domain of a separable Hilbert space. Applications to the decomposition into irreducible representations and into extremal states of representations and states of *-algebras with a countable dominating subset are given.

O. Introduction. This paper is concerned with the extension of the reduction theory for bounded operators [2] to algebras of unbounded operators and, as an application, with the decomposition of representations and states of *-algebras.

In a previous paper [3] we gave a meaning to the direct integral decomposition of unbounded operators, by considering them as bounded operators between several Hilbert spaces. Considering then, families \mathscr{A} of unbounded operators defined on a common dense domain \mathscr{D} of a separable Hilbert space \mathscr{H} (the so-called Op^* -algebras [8]) and considering the decomposition $\mathscr{H} = \int_A \mathscr{H}(\lambda) d\mu(\lambda)$ of the Hilbert space with respect to an Abelian von Neumann algebra \mathscr{M} contained in the strong commutant of \mathscr{A} , we have been able to define for almost every $\lambda \in \Lambda$, a domain $\mathscr{D}(\lambda)$ in $\mathscr{H}(\lambda)$ such that any $A \in \mathscr{A}$ can be written as $A = \int_A A(\lambda) d\mu(\lambda)$ where $A(\lambda)$ is a continuous operator from $\mathscr{D}(\lambda)$ into itself. Then, to any countable subalgebra $\mathscr{M}_0 \subset \mathscr{A}$ corresponds for almost every $\lambda \in \Lambda$ a countable Op^* -algebra $\mathscr{M}_0(\lambda)$ on $\mathscr{D}(\lambda)$.

However, in order to be sure that the domain $\mathscr{D}(\lambda)$ is nonzero and even dense in $\mathscr{H}(\lambda)$, almost everywhere, we had to ask that the \mathscr{A} -graph topology on \mathscr{D} is metrizable and this assumption characterizes the class of Op^* -algebras we want to consider. For examples of such Op^* -algebras we refer to [13], [14].

In this paper, we extend the decomposition to uncountable Op^* -algebras. If we look in [2] how it is possible to get the reduction of a von Neumann algebra once one is able to decompose a single operator or a countable set of operators, one sees that the important things are the following:

(a) a von Neumann algebra is separable in the strong operator topology.

(b) this strong operator topology is metrizable.

(c) If $A^i \rightarrow A$ is this topology any if $\{A^i\}$ and A are decom-