BOUNDS FOR THE PERRON ROOT OF A NONNEGATIVE IRREDUCIBLE PARTITIONED MATRIX

Emeric Deutsch

It is well-known that the Perron root of a nonnegative irreducible matrix lies between the smallest and the largest row sum of A. This result is generalized to the case when the matrix A is partitioned into blocks.

1. Introduction and notations. If $A = (a_{ij})$ is a nonnegative irreducible $n \times n$ matrix, then the Perron root r(A) of A satisfies the classical inequalities of Frobenius [1, p. 37; 9; 10, p. 63; 21, p. 31]

(1)
$$\min S_i \leq r(A) \leq \max S_i$$
,

where S_i denotes the *i*th row sum of A, i.e., $S_i = \sum_{j=1}^{n} a_{ij}$ $(i=1, \dots, n)$. Moreover, we have strict inequalities in (1) unless all the S_i 's are equal.

Other bounds for r(A) have been found by Ledermann [13], Ostrowski [15], Brauer [2], Ostrowski and Schneider [17], Hall and Porsching [11], Brauer and Gentry [3; 4], and Deutsch [8]. (In some of these papers one has assumed that A is a positive matrix.)

The purpose of this paper is to give some simple generalizations of the inequalities (1), by considering certain partitionings of A.

We introduce a few notations. By \mathbb{R}^m we denote the vector space of all column *m*-tuples of real numbers and $(x)_i$ denotes the *i*th (scalar) component of the vector $x \in \mathbb{R}^m$. By $\mathbb{R}^{m \times m}$ we denote the algebra of all $m \times m$ real matrices and $(A)_{ij}$ denotes the (scalar) (i, j)-entry of the matrix $A \in \mathbb{R}^{m \times m}$. For two vectors $x, y \in \mathbb{R}^m$, the inequality $x \leq y$ (x < y) means $(x_i) \leq (y)_i$ ($(x)_i < (y)_i$) for all $i = 1, \dots, m$. If $X_1, \dots, X_i \in \mathbb{R}^{m \times m}$, then $\bigwedge_{s=1}^t X_s$ ($\bigvee_{s=1}^t X_s$) denotes the greatest lower bound (least upper bound) of the matrices X_1, \dots, X_t in the natural (i.e., componentwise) partial ordering of $\mathbb{R}^{m \times m}$. In other words,

$$\left(\bigwedge_{s=1}^{t} X_{s}\right)_{ij} = \min_{s=1,\dots,t} (X_{s})_{ij}$$
, $\left(\bigvee_{s=1}^{t} X_{s}\right)_{ij} = \max_{s=1,\dots,t} (X_{s})_{ij}$,

for all $i, j = 1, \dots, m$.

The transpose of a matrix A (vector u) will be denoted by A^{\top} (u^{\top}) and the Perron root of a nonnegative matrix $A \in \mathbb{R}^{m \times m}$ will be denoted by r(A).

2. Let