bo-RESOLUTIONS

MARK MAHOWALD

This paper considers the Adams-Novikov type spectral sequence with bo as the spectrum. The action of the generator of $\pi_8 bo$ in the spectral sequence is completely determined. The result is a complete determination of the v_1 -periodic homotopy of the stable sphere.

1. Introduction. Let bo be the Ω -spectrum representing connected real K-theory. This spectrum is a ring spectrum with a unit and $H^*(bo) = A/A(Sq^1, Sq^2)$. (Unless otherwise noted, A is the mod 2 Steenrod algebra, all coefficient groups are Z_2 , and all spaces are localized at 2.)

Associated to a spectrum with unit, like bo, we have a tower of spectra

where $S_s \wedge bo \xleftarrow{id \wedge \iota} S_s \leftarrow S_{s+1}$ is a fibration and $l: S^0 \to bo$ is the unit. If we use the homotopy functor π^* , we get an exact couple with $E_1^{s\ t} = \pi_{t-s}(S_s \wedge bo)$. Under reasonable hypothesis on the spectrum, $E_{\infty}^{*,*}$ is an associated graded group of $\pi_*(S^0)$. This is true for bo since $\pi_j(S_s) = 0$ for j < 3s and so for t - s < 3s, $E_r^{s,t} = E_{\infty}^{s,t}$ for large enough r. This spectral sequence will be written $\{E_r(S^0, bo, \pi)\}$.

Clearly π_*bo acts on E_1 but d_1 is not a π_*bo module map. Nevertheless, if two classes in E_1 are related by the action of a class in π_*bo and they both survive to E_{∞} , then we will say that these two classes are still related in this manner. In particular the class which generates π_8bo is a basic periodicity class which we will call v_1^4 . (The name is suggested by *BP*-theory and is discussed in [3].) A class such that all multiples of it with v_1^{4k} are non zero is called a v_1 periodic class. Classes in E_1 which survive to E_{∞} but for which all π_*bo compositions except the identity do not survive will be said to generate a Z_2 vector space. Our main theorem is:

THEOREM 1.1.

(a)
$$E^{0\ t}_{\infty}(S^0, bo, \pi) = \mathbf{Z}$$
 $t = 0$
 $= \mathbf{Z}_2$ $t \equiv 1, 2 \mod 8$
 $= 0$ all other t .