INVARIANT SUBSPACES FOR FINITE MAXIMAL SUBDIAGONAL ALGEBRAS

KICHI-SUKE SAITO

Let M be a von Neumann algebra with a faithful, normal, tracial state τ and H^{∞} a finite, maximal, subdiagonal algebra in M. If $1 \le p < s \le \infty$, then there is a one-to-one correspondence between left-(resp. right-) invariant subspaces of the noncommutative Lebesgue space $L^p(M,\tau)$ and those of $L^s(M,\tau)$.

1. Introduction. Let M be a von Neumann algebra with a faithful, normal, tracial state τ and let H^{∞} be a finite, maximal, subdiagonal algebra in M. A number of authors have investigated the structure of the invariant subspaces for H^{∞} acting on the noncommutative Lebesgue space $L^{p}(M,\tau)$ (cf. [3], [4], [5] and [6]). In [6], we showed that, if \mathfrak{M} is a left-(resp. right-) invariant subspace of $L^{p}(M,\tau)$, $1 \leq p < \infty$, then \mathfrak{M} is the closure of the space of bounded elements it contains.

In this paper, we shall show that, if $1 \leq p < s \leq \infty$, then there is a one-to-one correspondence between left- (resp. right-) invariant subspaces \mathfrak{M}_p of $L^p(M, \tau)$ and left- (resp. right-) invariant subspaces \mathfrak{M}_s of $L^s(M, \tau)$, such that $\mathfrak{M}_s = \mathfrak{M}_p \cap L^s(M, \tau)$ and \mathfrak{M}_p is the closure in $L^p(M, \tau)$ of \mathfrak{M}_s . This is of course true in the weak*-Dirichlet algebras setting (cf. [2, p. 131]) and this is attractive to study the structure of the invariant subspaces of $L^p(M, \tau)$.

2. Let M be a von Neumann algebra with a faithful, normal, tracial state τ . We shall denote the noncommutative Lebesgue spaces associated with M and τ by $L^p(M,\tau)$, $1 \leq p < \infty$ (cf. [7]). As is customary, M will be identified with $L^\infty(M,\tau)$. The closure of a subset S of $L^p(M,\tau)$ in the L^p -norm will be denoted by $[S]_p$; $[S]_\infty$ will denote the closure of S in the σ -weak topology on $L^\infty(M,\tau)$.

DEFINITION 1. Let H^{∞} be a σ -weakly closed subalgebra of M containing the identity operator 1 and let Φ be a faithful, normal expectation from M onto $D=H^{\infty}\cap H^{\infty^*}(H^{\infty^*}=\{x^*:x\in H^{\infty}\})$. Then H^{∞} is called a finite, maximal, subdiagonal algebra in M with respect to Φ and τ in case the following conditions are satisfied: (1) $H^{\infty}+H^{\infty^*}$ is σ -weakly dense in M; (2) $\Phi(xy)=\Phi(x)\Phi(y)$, for all $x,y\in H^{\infty}$; (3) H^{∞} is maximal among those subalgebras of M satisfying (1) and (2); and (4) $\tau \circ \Phi = \tau$.