C*-ALGEBRAS ASSOCIATED WITH IRRATIONAL ROTATIONS

MARC A. RIEFFEL

For any irrational number α let A_{α} be the transformation group C^* -algebra for the action of the integers on the circle by powers of the rotation by angle $2\pi\alpha$. It is known that A_{α} is simple and has a unique normalized trace, τ . We show that for every β in $(\mathbf{Z} + \mathbf{Z}\alpha) \cap [0, 1]$ there is a projection pin A_{α} with $\tau(p) = \beta$. When this fact is combined with the very recent result of Pimsner and Voiculescu that if p is any projection in A_{α} then $\tau(p)$ must be in the above set, one can immediately show that, except for some obvious redundancies, the A_{α} are not isomorphic for different α . Moreover, we show that A_{α} and A_{β} are strongly Morita equivalent exactly if α and β are in the same orbit under the action of GL $(2, \mathbf{Z})$ on irrational numbers.

0. Introduction. Let α be an irrational number, and let S denote the rotation by angle $2\pi\alpha$ on the circle, T. Then the group of integers, Z, acts as a transformation group on T by means of powers of S, and we can form the corresponding transformation group C^{*}-algebra, A_{α} , as defined in [8, 19, 30]. If we view S as also acting on functions on T, and if C(T) denotes the algebra of continuous complex-valued functions on T, then S acts as an automorphism of C(T). This gives an action of Z as a group of automorphisms of $C(\mathbf{T})$, and A_{α} is just the crossed product algebra for this action [19, 30]. A convenient concrete realization of A_{α} consists of the norm-closed *-algebra of operators on $L^2(T)$ generated by S together with all the pointwise multiplication operators, M_f , for $f \in C(T)$. It is known [8, 19, 22, 30] that A_{α} is a simple C^{*}-algebra (with identity element) not of type I, and that A_{α} has a unique normalized trace, τ . In fact, on the dense *-subalgebra $C_{e}(Z, T, \alpha)$ consisting of finite sums of the form $\Sigma M_{f_n} S^n$ the trace is given by

$$au(arSigma M_{{{}^{f}}_n}S^n) = \int_T f_{\scriptscriptstyle 0}(t) dt$$
 ,

where dt is Lebesgue measure on the circle normalized to give the circle unit measure. (We remark that Theorem 1.1 of [27] can be used to show that this dense subalgebra itself is also simple.)

Little else has been known about the A_{α} . In particular, it has not been known whether or not the A_{α} are isomorphic as α varies. An interesting question raised in 7.3 of [8], and again recently in [22], is whether the A_{α} contain any projections. But in fact, shortly